001030111 001__ 1030111
001030111 005__ 20250203133157.0
001030111 0247_ $$2doi$$a10.1021/acsami.4c07252
001030111 0247_ $$2ISSN$$a1944-8244
001030111 0247_ $$2ISSN$$a1944-8252
001030111 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05224
001030111 0247_ $$2pmid$$a39093830
001030111 0247_ $$2WOS$$aWOS:001284141700001
001030111 037__ $$aFZJ-2024-05224
001030111 082__ $$a600
001030111 1001_ $$0P:(DE-HGF)0$$aWhang, Grace$$b0$$eCorresponding author
001030111 245__ $$aHigh Areal Capacity Cation and Anionic Redox Solid-State Batteries Enabled by Transition Metal Sulfide Conversion
001030111 260__ $$aWashington, DC$$bSoc.$$c2024
001030111 3367_ $$2DRIVER$$aarticle
001030111 3367_ $$2DataCite$$aOutput Types/Journal article
001030111 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1732627476_28774
001030111 3367_ $$2BibTeX$$aARTICLE
001030111 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001030111 3367_ $$00$$2EndNote$$aJournal Article
001030111 500__ $$aFunding by: BMBF project "MaSSiF" (03XP0519C)  
001030111 520__ $$aPure sulfur ($S_8$ and $Li_2S$) all solid-state batteries inherently suffer from low electronic conductivities, requiring the use of carbon additives, resulting in decreased active material loading at the expense of increased loading of the passive components. In this work, a transition metal sulfide in combination with lithium disulfide is employed as a dual cation–anion redox conversion composite cathode system. The transition metal sulfide undergoes cation redox, enhancing the electronic conductivity, whereas the lithium disulfide undergoes anion redox, enabling high-voltage redox conducive to achieving high energy densities. Carbon-free cathode composites with active material loadings above 6.0 mg cm–2 attaining areal capacities of ∼4 mAh cm–2 are demonstrated with the possibility to further increase the active mass loading above 10 mg cm–2 achieving cathode areal capacities above 6 mAh cm–2, albeit with less cycle stability. In addition, the effective partial transport and thermal properties of the composites are investigated to better understand $FeS:Li_2S$ cathode properties at the composite level. The work introduced here provides an alternative route and blueprint toward designing new dual conversion cathode systems, which can operate without carbon additives enabling higher active material loadings and areal capacities.
001030111 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001030111 536__ $$0G:(GEPRIS)459785385$$aDFG project G:(GEPRIS)459785385 - Röntgenpulverdiffraktometer (459785385)$$c459785385$$x1
001030111 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001030111 7001_ $$0P:(DE-HGF)0$$aKetter, Lukas$$b1
001030111 7001_ $$0P:(DE-HGF)0$$aZhao, Tong$$b2
001030111 7001_ $$00000-0002-6514-2750$$aNazmutdinova, Elina$$b3
001030111 7001_ $$0P:(DE-Juel1)192207$$aKraft, Marvin A.$$b4
001030111 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b5$$eCorresponding author
001030111 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.4c07252$$gVol. 16, no. 32, p. 42189 - 42197$$n32$$p42189 - 42197$$tACS applied materials & interfaces$$v16$$x1944-8244$$y2024
001030111 8564_ $$uhttps://juser.fz-juelich.de/record/1030111/files/revised_Manuscript.pdf$$yPublished on 2024-08-02. Available in OpenAccess from 2025-08-02.
001030111 8564_ $$uhttps://juser.fz-juelich.de/record/1030111/files/revised_Manuscript.gif?subformat=icon$$xicon$$yPublished on 2024-08-02. Available in OpenAccess from 2025-08-02.
001030111 8564_ $$uhttps://juser.fz-juelich.de/record/1030111/files/revised_Manuscript.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2024-08-02. Available in OpenAccess from 2025-08-02.
001030111 8564_ $$uhttps://juser.fz-juelich.de/record/1030111/files/revised_Manuscript.jpg?subformat=icon-180$$xicon-180$$yPublished on 2024-08-02. Available in OpenAccess from 2025-08-02.
001030111 8564_ $$uhttps://juser.fz-juelich.de/record/1030111/files/revised_Manuscript.jpg?subformat=icon-640$$xicon-640$$yPublished on 2024-08-02. Available in OpenAccess from 2025-08-02.
001030111 909CO $$ooai:juser.fz-juelich.de:1030111$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001030111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192207$$aForschungszentrum Jülich$$b4$$kFZJ
001030111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b5$$kFZJ
001030111 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001030111 9141_ $$y2024
001030111 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001030111 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001030111 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001030111 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2022$$d2024-12-13
001030111 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
001030111 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
001030111 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
001030111 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
001030111 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-13
001030111 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
001030111 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2022$$d2024-12-13
001030111 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001030111 980__ $$ajournal
001030111 980__ $$aVDB
001030111 980__ $$aUNRESTRICTED
001030111 980__ $$aI:(DE-Juel1)IMD-4-20141217
001030111 9801_ $$aFullTexts