001     1030111
005     20250203133157.0
024 7 _ |a 10.1021/acsami.4c07252
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05224
|2 datacite_doi
024 7 _ |a 39093830
|2 pmid
024 7 _ |a WOS:001284141700001
|2 WOS
037 _ _ |a FZJ-2024-05224
082 _ _ |a 600
100 1 _ |a Whang, Grace
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a High Areal Capacity Cation and Anionic Redox Solid-State Batteries Enabled by Transition Metal Sulfide Conversion
260 _ _ |a Washington, DC
|c 2024
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1732627476_28774
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Funding by: BMBF project "MaSSiF" (03XP0519C)
520 _ _ |a Pure sulfur ($S_8$ and $Li_2S$) all solid-state batteries inherently suffer from low electronic conductivities, requiring the use of carbon additives, resulting in decreased active material loading at the expense of increased loading of the passive components. In this work, a transition metal sulfide in combination with lithium disulfide is employed as a dual cation–anion redox conversion composite cathode system. The transition metal sulfide undergoes cation redox, enhancing the electronic conductivity, whereas the lithium disulfide undergoes anion redox, enabling high-voltage redox conducive to achieving high energy densities. Carbon-free cathode composites with active material loadings above 6.0 mg cm–2 attaining areal capacities of ∼4 mAh cm–2 are demonstrated with the possibility to further increase the active mass loading above 10 mg cm–2 achieving cathode areal capacities above 6 mAh cm–2, albeit with less cycle stability. In addition, the effective partial transport and thermal properties of the composites are investigated to better understand $FeS:Li_2S$ cathode properties at the composite level. The work introduced here provides an alternative route and blueprint toward designing new dual conversion cathode systems, which can operate without carbon additives enabling higher active material loadings and areal capacities.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)459785385 - Röntgenpulverdiffraktometer (459785385)
|0 G:(GEPRIS)459785385
|c 459785385
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ketter, Lukas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhao, Tong
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Nazmutdinova, Elina
|0 0000-0002-6514-2750
|b 3
700 1 _ |a Kraft, Marvin A.
|0 P:(DE-Juel1)192207
|b 4
700 1 _ |a Zeier, Wolfgang G.
|0 P:(DE-Juel1)184735
|b 5
|e Corresponding author
773 _ _ |a 10.1021/acsami.4c07252
|g Vol. 16, no. 32, p. 42189 - 42197
|0 PERI:(DE-600)2467494-1
|n 32
|p 42189 - 42197
|t ACS applied materials & interfaces
|v 16
|y 2024
|x 1944-8244
856 4 _ |y Published on 2024-08-02. Available in OpenAccess from 2025-08-02.
|u https://juser.fz-juelich.de/record/1030111/files/revised_Manuscript.pdf
856 4 _ |y Published on 2024-08-02. Available in OpenAccess from 2025-08-02.
|x icon
|u https://juser.fz-juelich.de/record/1030111/files/revised_Manuscript.gif?subformat=icon
856 4 _ |y Published on 2024-08-02. Available in OpenAccess from 2025-08-02.
|x icon-1440
|u https://juser.fz-juelich.de/record/1030111/files/revised_Manuscript.jpg?subformat=icon-1440
856 4 _ |y Published on 2024-08-02. Available in OpenAccess from 2025-08-02.
|x icon-180
|u https://juser.fz-juelich.de/record/1030111/files/revised_Manuscript.jpg?subformat=icon-180
856 4 _ |y Published on 2024-08-02. Available in OpenAccess from 2025-08-02.
|x icon-640
|u https://juser.fz-juelich.de/record/1030111/files/revised_Manuscript.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1030111
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)192207
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)184735
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2024
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2022
|d 2024-12-13
920 1 _ |0 I:(DE-Juel1)IMD-4-20141217
|k IMD-4
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-4-20141217
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21