001030118 001__ 1030118
001030118 005__ 20250203133158.0
001030118 0247_ $$2doi$$a10.1002/smsc.202400135
001030118 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05228
001030118 0247_ $$2WOS$$aWOS:001268402600001
001030118 037__ $$aFZJ-2024-05228
001030118 082__ $$a500
001030118 1001_ $$0P:(DE-HGF)0$$aHeidbüchel, Marcel$$b0
001030118 245__ $$aUltrahigh Ni‐Rich (90%) Layered Oxide‐Based Cathode Active Materials: The Advantages of Tungsten (W) Incorporation in the Precursor Cathode Active Material
001030118 260__ $$aWeinheim$$bWiley-VCH GmbH$$c2024
001030118 3367_ $$2DRIVER$$aarticle
001030118 3367_ $$2DataCite$$aOutput Types/Journal article
001030118 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1731660075_6492
001030118 3367_ $$2BibTeX$$aARTICLE
001030118 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001030118 3367_ $$00$$2EndNote$$aJournal Article
001030118 500__ $$aThe authors thank the European Union for funding this work in the project “SeNSE.” This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 875548. Furthermore, the authors would like to acknowledge DeutscheForschungsgemeinschaft (DFG) for funding the TEM equipment via the Major Research Instrumentation Program under INST 211/719-1 FUGG.
001030118 520__ $$aMinor amounts of tungsten (W) are well known to improve Ni-rich layered oxide-based cathode active materials (CAMs) for Li ion batteries. Herein, W impacts are validated and compared for varied concentrations and incorporation routes in aqueous media for LiNi0.90Co0.06Mn0.04O2 (NCM90-6-4), either via modification of a precursor NixCoyMnz(OH)2 (pCAM) within a sol–gel reaction or directly during synthesis, i.e., either via an W-based educt or during co-precipitation in a continuously operated Couette–Taylor reactor. In particular, the sol–gel modification is shown to be beneficial and reveals >500 cycles for ≈80% state-of-health NCM90-6-4||graphite cells. It can be related to homogeneously W-modified surface as well as smaller and elongated primary particles, whereas the latter are suggested to better compensate anisotropic lattice stress and decrease amount of microcracks, consequently minimizing further rise in surface area and the accompanied failure cascades (e.g., phase changes, metal dissolution, and crosstalk). Moreover, the different incorporation routes are shown to reveal different outcomes and demonstrate the complexity and sensitivity of W incorporation.
001030118 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001030118 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001030118 7001_ $$0P:(DE-HGF)0$$aGomez-Martin, Aurora$$b1
001030118 7001_ $$0P:(DE-HGF)0$$aFrankenstein, Lars$$b2
001030118 7001_ $$0P:(DE-HGF)0$$aMakvandi, Ardavan$$b3
001030118 7001_ $$0P:(DE-HGF)0$$aPeterlechner, Martin$$b4
001030118 7001_ $$0P:(DE-HGF)0$$aWilde, Gerhard$$b5
001030118 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6
001030118 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b7$$eCorresponding author
001030118 773__ $$0PERI:(DE-600)3042766-6$$a10.1002/smsc.202400135$$gp. 2400135$$n10$$p2400135$$tSmall science$$v4$$x2688-4046$$y2024
001030118 8564_ $$uhttps://juser.fz-juelich.de/record/1030118/files/Small%20Science%20-%202024%20-%20Heidb%C3%BCchel%20-%20Ultrahigh%20Ni%E2%80%90Rich%2090%20Layered%20Oxide%E2%80%90Based%20Cathode%20Active%20Materials%20The%20Advantages%20of-1.pdf$$yOpenAccess
001030118 909CO $$ooai:juser.fz-juelich.de:1030118$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001030118 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
001030118 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b7$$kFZJ
001030118 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001030118 9141_ $$y2024
001030118 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001030118 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
001030118 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001030118 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
001030118 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
001030118 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
001030118 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-08T17:10:21Z
001030118 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-08T17:10:21Z
001030118 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-08-08T17:10:21Z
001030118 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
001030118 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-21
001030118 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
001030118 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001030118 980__ $$ajournal
001030118 980__ $$aVDB
001030118 980__ $$aUNRESTRICTED
001030118 980__ $$aI:(DE-Juel1)IMD-4-20141217
001030118 9801_ $$aFullTexts