001     1030118
005     20250203133158.0
024 7 _ |a 10.1002/smsc.202400135
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05228
|2 datacite_doi
024 7 _ |a WOS:001268402600001
|2 WOS
037 _ _ |a FZJ-2024-05228
082 _ _ |a 500
100 1 _ |a Heidbüchel, Marcel
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Ultrahigh Ni‐Rich (90%) Layered Oxide‐Based Cathode Active Materials: The Advantages of Tungsten (W) Incorporation in the Precursor Cathode Active Material
260 _ _ |a Weinheim
|c 2024
|b Wiley-VCH GmbH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1731660075_6492
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a The authors thank the European Union for funding this work in the project “SeNSE.” This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 875548. Furthermore, the authors would like to acknowledge DeutscheForschungsgemeinschaft (DFG) for funding the TEM equipment via the Major Research Instrumentation Program under INST 211/719-1 FUGG.
520 _ _ |a Minor amounts of tungsten (W) are well known to improve Ni-rich layered oxide-based cathode active materials (CAMs) for Li ion batteries. Herein, W impacts are validated and compared for varied concentrations and incorporation routes in aqueous media for LiNi0.90Co0.06Mn0.04O2 (NCM90-6-4), either via modification of a precursor NixCoyMnz(OH)2 (pCAM) within a sol–gel reaction or directly during synthesis, i.e., either via an W-based educt or during co-precipitation in a continuously operated Couette–Taylor reactor. In particular, the sol–gel modification is shown to be beneficial and reveals >500 cycles for ≈80% state-of-health NCM90-6-4||graphite cells. It can be related to homogeneously W-modified surface as well as smaller and elongated primary particles, whereas the latter are suggested to better compensate anisotropic lattice stress and decrease amount of microcracks, consequently minimizing further rise in surface area and the accompanied failure cascades (e.g., phase changes, metal dissolution, and crosstalk). Moreover, the different incorporation routes are shown to reveal different outcomes and demonstrate the complexity and sensitivity of W incorporation.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gomez-Martin, Aurora
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Frankenstein, Lars
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Makvandi, Ardavan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Peterlechner, Martin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wilde, Gerhard
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 6
700 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 7
|e Corresponding author
773 _ _ |a 10.1002/smsc.202400135
|g p. 2400135
|0 PERI:(DE-600)3042766-6
|n 10
|p 2400135
|t Small science
|v 4
|y 2024
|x 2688-4046
856 4 _ |u https://juser.fz-juelich.de/record/1030118/files/Small%20Science%20-%202024%20-%20Heidb%C3%BCchel%20-%20Ultrahigh%20Ni%E2%80%90Rich%2090%20Layered%20Oxide%E2%80%90Based%20Cathode%20Active%20Materials%20The%20Advantages%20of-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1030118
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)171865
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:10:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:10:21Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:10:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
920 1 _ |0 I:(DE-Juel1)IMD-4-20141217
|k IMD-4
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-4-20141217
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21