001     1030122
005     20250203133158.0
024 7 _ |a 10.1002/cssc.202400626
|2 doi
024 7 _ |a 1864-5631
|2 ISSN
024 7 _ |a 1864-564X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05232
|2 datacite_doi
024 7 _ |a 38747027
|2 pmid
024 7 _ |a WOS:001248815400001
|2 WOS
037 _ _ |a FZJ-2024-05232
082 _ _ |a 540
100 1 _ |a Rudolf, Katharina
|b 0
245 _ _ |a Radical Polymer‐based Positive Electrodes for Dual‐Ion Batteries: Enhancing Performance with γ‐Butyrolactone‐based Electrolytes
260 _ _ |a Weinheim
|c 2024
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1727859864_14524
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a The authors acknowledge the German research foundation (DFG) for funding within the priority program SPP 2248 “Polymer-based Batteries.
520 _ _ |a Dual-ion batteries (DIBs) represent a promising alternative for lithium ion batteries (LIBs) for various niche applications. DIBs with polymer-based active materials, here poly(2,2,6,6-tetramethylpiperidinyl-N-oxyl methacrylate) (PTMA), are of particular interest for high power applications, though they require appropriate electrolyte formulations. As the anion mobility plays a crucial role in transport kinetics, Li salts are varied using the well-dissociating solvent γ-butyrolactone (GBL). Lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalate)borate (LiBOB) improve cycle life in PTMA||Li metal cells compared to other Li salts and a LiPF6- and carbonate-based reference electrolyte, even at specific currents of 1.0 A g−1 (≈10C), whereas LiDFOB reveals a superior rate performance, i. e., ≈90 % capacity even at 5.0 A g−1 (≈50C). This is attributed to faster charge-transfer/mass transport, enhanced pseudo-capacitive contributions during the de-/insertion of the anions into the PTMA electrode and to lower overpotentials at the Li metal electrode.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Voigt, Linus
|b 1
700 1 _ |a Muench, Simon
|0 0000-0003-3710-4682
|b 2
700 1 _ |a Frankenstein, Lars
|b 3
700 1 _ |a Landsmann, Justin
|b 4
700 1 _ |a Schubert, Ulrich S.
|0 0000-0003-4978-4670
|b 5
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 6
700 1 _ |a Placke, Tobias
|0 0000-0002-2097-5193
|b 7
700 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 8
|e Corresponding author
773 _ _ |a 10.1002/cssc.202400626
|g p. e202400626
|0 PERI:(DE-600)2411405-4
|n 17
|p e202400626
|t ChemSusChem
|v 17
|y 2024
|x 1864-5631
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1030122/files/ChemSusChem%20-%202024%20-%20Rudolf%20-%20Radical%20Polymer%E2%80%90based%20Positive%20Electrodes%20for%20Dual%E2%80%90Ion%20Batteries%20Enhancing%20Performance%20with%20-1.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1030122/files/ChemSusChem%20-%202024%20-%20Rudolf%20-%20Radical%20Polymer%E2%80%90based%20Positive%20Electrodes%20for%20Dual%E2%80%90Ion%20Batteries%20Enhancing%20Performance%20with%20-1.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1030122/files/ChemSusChem%20-%202024%20-%20Rudolf%20-%20Radical%20Polymer%E2%80%90based%20Positive%20Electrodes%20for%20Dual%E2%80%90Ion%20Batteries%20Enhancing%20Performance%20with%20-1.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1030122/files/ChemSusChem%20-%202024%20-%20Rudolf%20-%20Radical%20Polymer%E2%80%90based%20Positive%20Electrodes%20for%20Dual%E2%80%90Ion%20Batteries%20Enhancing%20Performance%20with%20-1.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1030122/files/ChemSusChem%20-%202024%20-%20Rudolf%20-%20Radical%20Polymer%E2%80%90based%20Positive%20Electrodes%20for%20Dual%E2%80%90Ion%20Batteries%20Enhancing%20Performance%20with%20-1.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1030122
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)171865
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-25
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMSUSCHEM : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEMSUSCHEM : 2022
|d 2024-12-20
920 1 _ |0 I:(DE-Juel1)IMD-4-20141217
|k IMD-4
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-4-20141217
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21