Hauptseite > Publikationsdatenbank > Linking network- and neuron-level correlations by renormalized field theory > print |
001 | 1030128 | ||
005 | 20250203133158.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevResearch.6.033264 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2024-05234 |2 datacite_doi |
024 | 7 | _ | |a WOS:001310522300005 |2 WOS |
037 | _ | _ | |a FZJ-2024-05234 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Dick, Michael |0 P:(DE-Juel1)176960 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Linking network- and neuron-level correlations by renormalized field theory |
260 | _ | _ | |a College Park, MD |c 2024 |b APS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1730190085_31472 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a It is frequently hypothesized that cortical networks operate close to a critical point. Advantages of criticality include rich dynamics well suited for computation and critical slowing down, which may offer a mechanism for dynamic memory. However, mean-field approximations, while versatile and popular, inherently neglect the fluctuations responsible for such critical dynamics. Thus, a renormalized theory is necessary. We consider the Sompolinsky-Crisanti-Sommers model which displays a well studied chaotic as well as a magnetic transition. Based on the analog of a quantum effective action, we derive self-consistency equations for the first two renormalized Greens functions. Their self-consistent solution reveals a coupling between the population level activity and single neuron heterogeneity. The quantitative theory explains the population autocorrelation function, the single-unit autocorrelation function with its multiple temporal scales, and cross correlations. |
536 | _ | _ | |a 5232 - Computational Principles (POF4-523) |0 G:(DE-HGF)POF4-5232 |c POF4-523 |f POF IV |x 0 |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 1 |
536 | _ | _ | |a RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A) |0 G:(DE-Juel-1)BMBF-01IS19077A |c BMBF-01IS19077A |x 2 |
536 | _ | _ | |a DFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487) |0 G:(GEPRIS)491111487 |c 491111487 |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Meegen, Alexander van |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Helias, Moritz |0 P:(DE-Juel1)144806 |b 2 |u fzj |
773 | _ | _ | |a 10.1103/PhysRevResearch.6.033264 |g Vol. 6, no. 3, p. 033264 |0 PERI:(DE-600)3004165-X |n 3 |p 033264 |t Physical review research |v 6 |y 2024 |x 2643-1564 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1030128/files/INV_24_AUG_014730.pdf |
856 | 4 | _ | |x icon |u https://juser.fz-juelich.de/record/1030128/files/INV_24_AUG_014730.gif?subformat=icon |
856 | 4 | _ | |x icon-1440 |u https://juser.fz-juelich.de/record/1030128/files/INV_24_AUG_014730.jpg?subformat=icon-1440 |
856 | 4 | _ | |x icon-180 |u https://juser.fz-juelich.de/record/1030128/files/INV_24_AUG_014730.jpg?subformat=icon-180 |
856 | 4 | _ | |x icon-640 |u https://juser.fz-juelich.de/record/1030128/files/INV_24_AUG_014730.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1030128/files/PhysRevResearch.6.033264.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1030128/files/PhysRevResearch.6.033264.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1030128/files/PhysRevResearch.6.033264.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1030128/files/PhysRevResearch.6.033264.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1030128/files/PhysRevResearch.6.033264.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1030128 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176960 |
910 | 1 | _ | |a Department of Computer Science 3 - Software Engineering, RWTH Aachen University, 52074 Aachen, Germany |0 I:(DE-HGF)0 |b 0 |6 P:(DE-Juel1)176960 |
910 | 1 | _ | |a Institute of Zoology, University of Cologne, 50674 Cologne, Germany |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)144806 |
910 | 1 | _ | |a Department of Physics, Faculty 1, RWTH Aachen University, 52065 Aachen, Germany |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)144806 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5232 |x 0 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-02-07T08:08:02Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-02-07T08:08:02Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-02-07T08:08:02Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Computational and Systems Neuroscience |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|