001     1030128
005     20250203133158.0
024 7 _ |a 10.1103/PhysRevResearch.6.033264
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05234
|2 datacite_doi
024 7 _ |a WOS:001310522300005
|2 WOS
037 _ _ |a FZJ-2024-05234
082 _ _ |a 530
100 1 _ |a Dick, Michael
|0 P:(DE-Juel1)176960
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Linking network- and neuron-level correlations by renormalized field theory
260 _ _ |a College Park, MD
|c 2024
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1730190085_31472
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a It is frequently hypothesized that cortical networks operate close to a critical point. Advantages of criticality include rich dynamics well suited for computation and critical slowing down, which may offer a mechanism for dynamic memory. However, mean-field approximations, while versatile and popular, inherently neglect the fluctuations responsible for such critical dynamics. Thus, a renormalized theory is necessary. We consider the Sompolinsky-Crisanti-Sommers model which displays a well studied chaotic as well as a magnetic transition. Based on the analog of a quantum effective action, we derive self-consistency equations for the first two renormalized Greens functions. Their self-consistent solution reveals a coupling between the population level activity and single neuron heterogeneity. The quantitative theory explains the population autocorrelation function, the single-unit autocorrelation function with its multiple temporal scales, and cross correlations.
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 1
536 _ _ |a RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A)
|0 G:(DE-Juel-1)BMBF-01IS19077A
|c BMBF-01IS19077A
|x 2
536 _ _ |a DFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Meegen, Alexander van
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 2
|u fzj
773 _ _ |a 10.1103/PhysRevResearch.6.033264
|g Vol. 6, no. 3, p. 033264
|0 PERI:(DE-600)3004165-X
|n 3
|p 033264
|t Physical review research
|v 6
|y 2024
|x 2643-1564
856 4 _ |u https://juser.fz-juelich.de/record/1030128/files/INV_24_AUG_014730.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/1030128/files/INV_24_AUG_014730.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/1030128/files/INV_24_AUG_014730.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/1030128/files/INV_24_AUG_014730.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/1030128/files/INV_24_AUG_014730.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1030128/files/PhysRevResearch.6.033264.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1030128/files/PhysRevResearch.6.033264.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1030128/files/PhysRevResearch.6.033264.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1030128/files/PhysRevResearch.6.033264.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1030128/files/PhysRevResearch.6.033264.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1030128
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176960
910 1 _ |a Department of Computer Science 3 - Software Engineering, RWTH Aachen University, 52074 Aachen, Germany
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)176960
910 1 _ |a Institute of Zoology, University of Cologne, 50674 Cologne, Germany
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144806
910 1 _ |a Department of Physics, Faculty 1, RWTH Aachen University, 52065 Aachen, Germany
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)144806
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-02-07T08:08:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-02-07T08:08:02Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-02-07T08:08:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21