001030129 001__ 1030129
001030129 005__ 20241111205910.0
001030129 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05235
001030129 0247_ $$2URN$$aurn:nbn:de:0001-20241111120825393-5156556-4
001030129 020__ $$a978-3-95806-770-7
001030129 037__ $$aFZJ-2024-05235
001030129 1001_ $$0P:(DE-Juel1)180371$$aZheng, Siyuan$$b0$$eCorresponding author
001030129 245__ $$aInvestigation of Lower Boundary Conditions of Brominated Very Short-lived Species (VSLS)$$f- 2024-06-30
001030129 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2024
001030129 300__ $$a2, iii, 160
001030129 3367_ $$2DataCite$$aOutput Types/Dissertation
001030129 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
001030129 3367_ $$2ORCID$$aDISSERTATION
001030129 3367_ $$2BibTeX$$aPHDTHESIS
001030129 3367_ $$02$$2EndNote$$aThesis
001030129 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1725529993_9769
001030129 3367_ $$2DRIVER$$adoctoralThesis
001030129 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v637
001030129 502__ $$aDissertation, Wuppertal, 2024$$bDissertation$$cWuppertal$$d2024
001030129 520__ $$aPhotochemical reactions with the reactive halogen atoms Cl and Br mostly cause stratospheric ozone depletion. The chlorine- and bromine-containing very short-lived species (VSLS), which have an atmospheric lifetime of less than six months, play an essentialrole in stratospheric total bromine loading. However, there is considerable uncertainty about the geographical distribution of their sources, and therefore, it is challenging to reproduce the observations. In order to describe the stratospheric or regional abundance of bromine from VSLS, it is of great importance to quantify the lower boundary conditions of these species. In order to increase our understanding of the role of brominated species in the stratosphere, the Chemical Lagrangian Model of the Stratosphere (CLaMS) has been used to investigate the global surface mixing ratio and lower boundary conditions for the simulation in this thesis. The simulation uses a ‘top-down’ approach, where atmospheric measurements from aircraft are used in combination with models to quantify and refine the lower boundary emissions. Firstly, for the representation of tropospheric bromine chemistry, the scheme incorporates bromine-containing species and related chemical decomposition reactions into CLaMS, which include photolysis and reactions with Cl, O(1D), and OH. Using a box model, this chemistry scheme was successfully tested and transferred to the more comprehensive global 3D chemical transport model, MESSy-CLaMS.Secondly, for the representation of tropospheric bromine chemistry, a parameterization for the washout of the inorganic bromine species HBr and HOBr in the troposphere by cloud uptake was incorporated. To enhance the representation of the transport scheme, additional tropospheric mixing and vertical transport by convection were adopted employing the MESSy-CLaMS 2.0 version. Finally, to investigate the lower boundary conditions of the two most significant bromine VSLS, CHBr3 and CH2Br2, the CLaMS model constructed the zonal symmetric seasonal dependent lower boundary, the seasonal and monthly dependent regionally resolved lower boundary map
001030129 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001030129 8564_ $$uhttps://juser.fz-juelich.de/record/1030129/files/Energie_Umwelt_637.pdf$$yOpenAccess
001030129 8564_ $$uhttps://juser.fz-juelich.de/record/1030129/files/Energie_Umwelt_637.gif?subformat=icon$$xicon$$yOpenAccess
001030129 8564_ $$uhttps://juser.fz-juelich.de/record/1030129/files/Energie_Umwelt_637.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001030129 8564_ $$uhttps://juser.fz-juelich.de/record/1030129/files/Energie_Umwelt_637.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001030129 8564_ $$uhttps://juser.fz-juelich.de/record/1030129/files/Energie_Umwelt_637.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001030129 909CO $$ooai:juser.fz-juelich.de:1030129$$pVDB$$pdriver$$purn$$popen_access$$popenaire$$pdnbdelivery
001030129 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001030129 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001030129 9141_ $$y2024
001030129 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180371$$aForschungszentrum Jülich$$b0$$kFZJ
001030129 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001030129 920__ $$lyes
001030129 9201_ $$0I:(DE-Juel1)ICE-4-20101013$$kICE-4$$lStratosphäre$$x0
001030129 980__ $$aphd
001030129 980__ $$aVDB
001030129 980__ $$aUNRESTRICTED
001030129 980__ $$abook
001030129 980__ $$aI:(DE-Juel1)ICE-4-20101013
001030129 9801_ $$aFullTexts