
OPTIMIZING AN HPC LBM APPLICATION USING CUDA GRAPHS

Milena Veneva, Jayesh Badwaik, Andreas Herten
Forschungzentrum Jülich

OPTIMIZING AN HPC LBM APPLICATION USING CUDA GRAPHS

Milena Veneva, Jayesh Badwaik, Andreas Herten
Forschungzentrum Jülich

Introduction

With increasing focus on scalability and performance of high performance
computing applications, it has become important for the simulation softwares
to be able to utilize the underlying hardware as comprehensively to its maxi-
mum performance.
waLBerla [2] is a multiphysics software framework that has achieved high scal-
ability and performance. It achieves this excellent performance due to archi-
tecture specific code generation algorithms [1] combined with efficient com-
munication and parallel data structures like BlockForest.
In this work, we attempt to improve the GPU utilization of an Lattice-Boltzmann
Method (LBM) software.

Objectives and Motivation

Objective:

Exploit CUDA Graphs to improve GPU utilization in Walberla for simulations
with small block sizes.

Motivation

Fig. 3: Weak Scaling for Walberla on Juwels Booster

process P1
process P2
process P3
process P4

Fig. 4: Domain Partitioning in Walberla. The whole

domain is divided into blocks of possibly different

sizes. The blocks are then distributed among the

available processes.

Walberla achieves high scalability in general. However, for regions with AMR
as shown in Figure 4, small block sizes lead to suboptimal utilization of GPUs

▶Small block sizes lead to smaller kernel run times

▶Kernel launch times become comparable to kernel run times

▶ Leading to suboptimal utilization of GPUs

▶CUDA Graphs

– Define work as graph rather than single operation
– Requires dependency graphs between kernels

▶Exploit the fixed dependency graphs in WALBERLA

Method

Fig. 5: Dependency Between Kernels in Walberla

(Yellow : Communication Kernels, Green: MPI Communiation API Calls, Others: Compute Kernels)

▶Port UniformGridGPU Benchmark to CUDA Graphs using 4 Graphs

– All pack kernels
– All unpack kernels

– Inner Domain Computation Kernels
– Outer Domain Computation Kernels

▶CUDA Graphs can only consist of GPU Kernels
– Exclude CUDA-Aware MPI (launched from CPU) from CUDA Graphs

▶Use CUDAStreamSynchronize to synchronize graph and non-graph components
▶Empty nodes added at beginning and end to help the graph scheduler.

Results

Fig. 6: Results on Juwels Booster

Conclusions

▶More than 100% improvement in performance for smaller block sizes.

▶Between 6% and 23% improvement for large block sizes.

▶Traditional MPI Calls not integrable into CUDA Task Graphs

▶Possibility of further performance benefits by using communication frame-
works which can be integrated into graphs (NCCL instead of MPI).

Next Steps

▶Port More Complex Use Cases to CUDA Task Graphs

▶Port MPI Communications to use NCCL

References

References
[1] Martin Bauer, Harald Köstler, and Ulrich Rüde. “lbmpy: Automatic code generation for ef-
ficient parallel lattice Boltzmann methods”. In: Journal of Computational Science 49, 101269
(Feb. 2021). DOI: 10.1016/j.jocs.2020.101269.

[2] Martin Bauer et al. “waLBerla: A block-structured high-performance framework for multi-
physics simulations”. In: Computers and Mathematics with Applications 81 (2021). Develop-
ment and Application of Open-source Software for Problems with Numerical PDEs, pp. 478–
501. ISSN: 0898-1221. DOI: https://doi.org/10.1016/j.camwa.2020.01.007. URL:
https://www.sciencedirect.com/science/article/pii/S0898122120300146.

Acknowledgements

▶ This project has received funding from the European High-Performance Computing Joint Undertaking Joint
Undertaking (JU) under grant agreement No 956000

▶ The JU receives support from the European Union’s Horizon 2020 research and innovation programme, and
the French National Research Agency, the Federal Ministry of Education and Research of Germany, the
Ministry of Education, Youth and Sports of the Czech Republic.


