001030186 001__ 1030186
001030186 005__ 20250203133158.0
001030186 0247_ $$2doi$$a10.1186/s13705-024-00474-z
001030186 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05244
001030186 0247_ $$2WOS$$aWOS:001290252400001
001030186 037__ $$aFZJ-2024-05244
001030186 041__ $$aEnglish
001030186 082__ $$a333.7
001030186 1001_ $$0P:(DE-Juel1)174512$$aBenitez, Alicia$$b0$$eCorresponding author
001030186 245__ $$aScenario-based LCA for assessing the future environmental impacts of wind offshore energy: An exemplary analysis for a 9.5-MW wind turbine in Germany
001030186 260__ $$aHeidelberg$$bSpringer$$c2024
001030186 3367_ $$2DRIVER$$aarticle
001030186 3367_ $$2DataCite$$aOutput Types/Journal article
001030186 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1725544163_19650
001030186 3367_ $$2BibTeX$$aARTICLE
001030186 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001030186 3367_ $$00$$2EndNote$$aJournal Article
001030186 520__ $$aOffshore wind energy (OWE) will play a significant role in achieving climate neutrality. For example, several scenarios for Germany (e.g., Kopernikus base, Kopernikus 1.5 degree, Prognos CN65, and CN60) depict substantial OWE annual installed capacity additions, especially after 2030. This tendency promotes OWE technology development as deployment expands, allowing manufacturers to gain expertise and optimize wind turbine construction. The global trend towards ever-larger components (e.g., hub height and rotor diameter) is critical to achieving higher-rated capacities. These aspects and others, such as wind quality, influence not only OWE annual electricity production but also its environmental performance. In addition, future supply chains might reduce their environmental impacts and enhance OWE climate change mitigation. In this paper, a prospective life cycle assessment (pLCA) is developed and applied exemplarily for a 9.5-MW offshore wind turbine (OWT) on the North Sea coast of Germany for the years 2030 and 2050. Considering that the current OWTs under construction in Europe have an average capacity of 10 MW, Germany plans to instal OWTs of 9.5-MW. This exemplary OWT describes the potential advances for offshore wind turbines in 2030 and 2050, considering component scale-up and learning effects. Yet, the methodology is adaptable to various installed capacities and regions. This approach allows us to analyse not only the potential future characteristics of wind turbines, but also future developments in OWE supply chains. Therefore, relevant parameters related to OWT construction and operation (e.g., rotor diameter, hub height, distance to the shore, lifetime, etc.) as well as prospective life cycle inventory data for background systems that reflect potential future developments in the broader economy are considered. In this way, scenarios (e.g., optimistic, moderate, and pessimistic) for OWE elucidate the expected environmental impacts, such as climate change, marine eutrophication, and abiotic depletion potential, in 2030 and 2050.The findings describe the variability of the environmental impacts of a 9.5-MW offshore wind turbine representing the technologies expected to be available in Germany in 2030 and 2050 and show that climate change impacts could vary between 7 and 18 g CO2-eq per kWh produced in 2030 and between 5 and 17 g CO2-eq per kWh in 2050. However, marine eutrophication could experience a significant increase (100% increase), depending on the consideration of hydrogen as a fuel in the electricity mix, as demonstrated in the climate-neutral scenarios adopted for Germany. Overall, construction efficiency improvements in 2050 might reduce the required materials, leading to a 6% decrease in abiotic depletion potential compared to 2030 values.This paper highlights the need to consider temporal improvements in LCA studies, particularly when assessing the environmental impacts of offshore wind turbines. The complex nature and rapid growth of offshore wind technology require a comprehensive life cycle approach to deepen our understanding of its potential environmental impacts.
001030186 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
001030186 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001030186 7001_ $$0P:(DE-Juel1)168163$$aWulf, Christina$$b1$$ufzj
001030186 7001_ $$0P:(DE-HGF)0$$aSteubing, Bernhard$$b2
001030186 7001_ $$0P:(DE-HGF)0$$aGeldermann, Jutta$$b3
001030186 773__ $$0PERI:(DE-600)2641015-1$$a10.1186/s13705-024-00474-z$$gVol. 14, no. 1, p. 49$$n1$$p49$$tEnergy, Sustainability and Society$$v14$$x2192-0567$$y2024
001030186 8564_ $$uhttps://juser.fz-juelich.de/record/1030186/files/s13705-024-00474-z.pdf$$yOpenAccess
001030186 8564_ $$uhttps://juser.fz-juelich.de/record/1030186/files/s13705-024-00474-z.gif?subformat=icon$$xicon$$yOpenAccess
001030186 8564_ $$uhttps://juser.fz-juelich.de/record/1030186/files/s13705-024-00474-z.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001030186 8564_ $$uhttps://juser.fz-juelich.de/record/1030186/files/s13705-024-00474-z.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001030186 8564_ $$uhttps://juser.fz-juelich.de/record/1030186/files/s13705-024-00474-z.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001030186 8767_ $$8SN-2024-01454-b$$92024-12-05$$a1200209215$$d2024-12-18$$eAPC$$jZahlung erfolgt
001030186 909CO $$ooai:juser.fz-juelich.de:1030186$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001030186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174512$$aForschungszentrum Jülich$$b0$$kFZJ
001030186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168163$$aForschungszentrum Jülich$$b1$$kFZJ
001030186 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
001030186 9141_ $$y2024
001030186 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001030186 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001030186 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001030186 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001030186 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001030186 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
001030186 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001030186 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
001030186 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-26
001030186 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001030186 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-26
001030186 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY SUSTAIN SOC : 2022$$d2024-12-12
001030186 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
001030186 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
001030186 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:38:07Z
001030186 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:38:07Z
001030186 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:38:07Z
001030186 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
001030186 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
001030186 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-12
001030186 920__ $$lyes
001030186 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
001030186 9801_ $$aFullTexts
001030186 980__ $$ajournal
001030186 980__ $$aVDB
001030186 980__ $$aUNRESTRICTED
001030186 980__ $$aI:(DE-Juel1)IEK-STE-20101013
001030186 980__ $$aAPC