001     1030246
005     20250203133159.0
024 7 _ |a 10.1002/adma.202403274
|2 doi
024 7 _ |a 0935-9648
|2 ISSN
024 7 _ |a 1521-4095
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05263
|2 datacite_doi
024 7 _ |a 39045913
|2 pmid
024 7 _ |a WOS:001282239300001
|2 WOS
037 _ _ |a FZJ-2024-05263
082 _ _ |a 660
100 1 _ |a Yang, Luyan
|0 P:(DE-Juel1)180548
|b 0
|u fzj
245 _ _ |a Embedded Skyrmion Bags in Thin Films of Chiral Magnets
260 _ _ |a Weinheim
|c 2024
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1727862188_14523
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Magnetic skyrmions are topologically nontrivial spin configurations that possess particle-like properties. Earlier research has mainly focused on a specific type of skyrmion with topological charge Q = −1. However, theoretical analyses of 2D chiral magnets have predicted the existence of skyrmion bags—solitons with arbitrary positive or negative topological charge. Although such spin textures are metastable states, recent experimental observations have confirmed the stability of isolated skyrmion bags in a limited range of applied magnetic fields. Here, by utilizing Lorentz transmission electron microscopy, the extraordinary stability of skyrmion bags in thin plates of B20-type FeGe is shown. In particular, it is shown that skyrmion bags embedded within a skyrmion lattice remain stable even in zero or inverted external magnetic fields. A robust protocol for nucleating such embedded skyrmion bags is provided. The results agree perfectly with micromagnetic simulations and establish thin plates of cubic chiral magnets as a powerful platform for exploring a broad spectrum of topological magnetic solitons.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)
|0 G:(EU-Grant)856538
|c 856538
|f ERC-2019-SyG
|x 1
536 _ _ |a DFG project G:(GEPRIS)403502830 - Hybride dreidimensionale Solitonen für Anwendungen (403502830)
|0 G:(GEPRIS)403502830
|c 403502830
|x 2
536 _ _ |a DFG project G:(GEPRIS)403503315 - Grenzflächenstabilisierte Skyrmionen in Oxidstrukturen für die Skyrmionik (403503315)
|0 G:(GEPRIS)403503315
|c 403503315
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Savchenko, Andrii
|0 P:(DE-Juel1)180822
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Zheng, Fengshan
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Kiselev, Nikolai
|0 P:(DE-Juel1)145390
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Rybakov, Filipp N.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Han, Xiaodong
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 6
|u fzj
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 7
|u fzj
773 _ _ |a 10.1002/adma.202403274
|g p. 2403274
|0 PERI:(DE-600)1474949-X
|n 36
|p 2403274
|t Advanced materials
|v 36
|y 2024
|x 0935-9648
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1030246/files/Advanced%20Materials%20-%202024%20-%20Yang%20-%20Embedded%20Skyrmion%20Bags%20in%20Thin%20Films%20of%20Chiral%20Magnets-1.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1030246/files/Advanced%20Materials%20-%202024%20-%20Yang%20-%20Embedded%20Skyrmion%20Bags%20in%20Thin%20Films%20of%20Chiral%20Magnets-1.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1030246/files/Advanced%20Materials%20-%202024%20-%20Yang%20-%20Embedded%20Skyrmion%20Bags%20in%20Thin%20Films%20of%20Chiral%20Magnets-1.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1030246/files/Advanced%20Materials%20-%202024%20-%20Yang%20-%20Embedded%20Skyrmion%20Bags%20in%20Thin%20Films%20of%20Chiral%20Magnets-1.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1030246/files/Advanced%20Materials%20-%202024%20-%20Yang%20-%20Embedded%20Skyrmion%20Bags%20in%20Thin%20Films%20of%20Chiral%20Magnets-1.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1030246
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180548
910 1 _ |a Beijing Key Laboratory of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124 China
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)180548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180822
910 1 _ |a Spin-X Institute, Center for Electron Microscopy, School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 511442 China
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145390
910 1 _ |a Department of Physics and Astronomy, Uppsala University, Box-516, Uppsala, SE-751 20 Sweden
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Beijing Key Laboratory of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124 China
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 China
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV MATER : 2022
|d 2024-12-13
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21