001     1030396
005     20250805202238.0
024 7 _ |a 10.1016/j.jmst.2024.06.030
|2 doi
024 7 _ |a 1005-0302
|2 ISSN
024 7 _ |a 1941-1162
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05275
|2 datacite_doi
024 7 _ |a WOS:001301050500001
|2 WOS
037 _ _ |a FZJ-2024-05275
082 _ _ |a 670
100 1 _ |a Ganesan, Hariprasath
|0 P:(DE-Juel1)200155
|b 0
|e Corresponding author
245 _ _ |a Modeling segregated solutes in plastically deformed alloys using coupled molecular dynamics-Monte Carlo simulations
260 _ _ |a Shenyang
|c 2025
|b Ed. Board, Journal of Materials Science & Technology
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725534627_6710
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A microscopic understanding of the complex solute-defect interaction is pivotal for optimizing the alloy’s macroscopic mechanical properties. Simulating solute segregation in a plastically deformed crystalline system at atomic resolution remains challenging. The objective is to efficiently model and predict a physically informed segregated solute distribution rather than simulating a series of diffusion kinetics. To address this objective, we coupled molecular dynamics (MD) and Monte Carlo (MC) methods using a novel method based on virtual atoms technique. We applied our MD-MC coupling approach to model off-lattice carbon (C) solute segregation in nanoindented Fe-C samples containing complex dislocation networks. Our coupling framework yielded the final configuration through efficient parallelization and localized energy computations, showing C Cottrell atmospheres near dislocations. Different initial C concentrations resulted in a consistent trend of C atoms migrating from less crystalline distortion to high crystalline distortion regions. Besides unraveling the strong spatial correlation between local C concentration and defect regions, our results revealed two crucial aspects of solute segregation preferences: (1) defect energetics hierarchy and (2) tensile strain fields near dislocations. The proposed approach is generic and can be applied to other material systems as well.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sutmann, Godehard
|0 P:(DE-Juel1)132274
|b 1
|u fzj
773 _ _ |a 10.1016/j.jmst.2024.06.030
|g Vol. 213, p. 98 - 108
|0 PERI:(DE-600)2431914-4
|p 98 - 108
|t Journal of materials science & technology
|v 213
|y 2025
|x 1005-0302
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1030396/files/1-s2.0-S1005030224007047-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1030396/files/1-s2.0-S1005030224007047-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1030396/files/1-s2.0-S1005030224007047-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1030396/files/1-s2.0-S1005030224007047-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1030396/files/1-s2.0-S1005030224007047-main.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1030396
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)200155
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132274
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2023-10-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-06
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER SCI TECHNOL : 2022
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J MATER SCI TECHNOL : 2022
|d 2024-12-06
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21