001     1030398
005     20250203133159.0
024 7 _ |a 10.1039/D4NR01591F
|2 doi
024 7 _ |a 2040-3364
|2 ISSN
024 7 _ |a 2040-3372
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05277
|2 datacite_doi
024 7 _ |a 39129530
|2 pmid
024 7 _ |a WOS:001288433900001
|2 WOS
037 _ _ |a FZJ-2024-05277
082 _ _ |a 600
100 1 _ |a Sheverdyaeva, Polina M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Giant Rashba-splitting of one-dimensional metallic states in Bi dimer lines on InAs(100)
260 _ _ |a Cambridge
|c 2024
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725527520_7723
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Bismuth produces different types of ordered superstructures on the InAs(100) surface, depending on the growth procedure and coverage. The (2 × 1) phase forms at completion of one Bi monolayer and consists of a uniformly oriented array of parallel lines of Bi dimers. Scanning tunneling and core level spectroscopies demonstrate its metallic character, in contrast with the semiconducting properties expected on the basis of the electron counting principle. The weak electronic coupling among neighboring lines gives rise to quasi one-dimensional Bi-derived bands with open contours at the Fermi level. Spin- and angle-resolved photoelectron spectroscopy reveals a giant Rashba splitting of these bands, in good agreement with ab initio electronic structure calculations. The very high density of the dimer lines, the metallic and quasi one-dimensional band dispersion and the Rashba-like spin texture make the Bi/InAs(100)-(2 × 1) phase an intriguing system, where novel transport regimes can be studied.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bihlmayer, Gustav
|0 P:(DE-Juel1)130545
|b 1
700 1 _ |a Modesti, Silvio
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Feyer, Vitaliy
|0 P:(DE-Juel1)145012
|b 3
700 1 _ |a Jugovac, Matteo
|0 P:(DE-Juel1)169309
|b 4
700 1 _ |a Zamborlini, Giovanni
|0 P:(DE-Juel1)162281
|b 5
700 1 _ |a Tusche, Christian
|0 P:(DE-Juel1)168293
|b 6
|u fzj
700 1 _ |a Chen, Ying-Jiun
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Tan, Xin
|0 P:(DE-Juel1)204313
|b 8
|u fzj
700 1 _ |a Hagiwara, Kenta
|0 P:(DE-Juel1)174540
|b 9
700 1 _ |a Petaccia, Luca
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Thakur, Sangeeta
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Kundu, Asish K.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Carbone, Carlo
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Moras, Paolo
|0 P:(DE-HGF)0
|b 14
773 _ _ |a 10.1039/D4NR01591F
|g Vol. 16, no. 33, p. 15815 - 15823
|0 PERI:(DE-600)2515664-0
|n 33
|p 15815 - 15823
|t Nanoscale
|v 16
|y 2024
|x 2040-3364
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1030398/files/2404.13276v1.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1030398/files/d4nr01591f.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1030398/files/2404.13276v1.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1030398/files/2404.13276v1.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1030398/files/2404.13276v1.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1030398/files/2404.13276v1.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1030398/files/d4nr01591f.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1030398/files/d4nr01591f.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1030398/files/d4nr01591f.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1030398/files/d4nr01591f.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1030398
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149 Trieste, Italy
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130545
910 1 _ |a Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Dipartimento di Fisica, Università di Trieste, 34127 Trieste, Italy
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145012
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)168293
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Fakultät für Physik, Universität Duisburg-Essen, 47057 Duisburg, Germany
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)204313
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)174540
910 1 _ |a Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, 34149 Trieste, Italy
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, 34149 Trieste, Italy
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-HGF)0
910 1 _ |a Freie Universität Berlin, Institut für Experimentalphysik Arnimallee 14, 14195 Berlin, Germany
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-HGF)0
910 1 _ |a Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149 Trieste, Italy
|0 I:(DE-HGF)0
|b 12
|6 P:(DE-HGF)0
910 1 _ |a Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
|0 I:(DE-HGF)0
|b 12
|6 P:(DE-HGF)0
910 1 _ |a Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149 Trieste, Italy
|0 I:(DE-HGF)0
|b 13
|6 P:(DE-HGF)0
910 1 _ |a Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149 Trieste, Italy
|0 I:(DE-HGF)0
|b 14
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 3.0
|0 LIC:(DE-HGF)CCBYNC3
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANOSCALE : 2022
|d 2024-12-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NANOSCALE : 2022
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21