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Abstract

Our collective understanding of the laws of nature has a long history of an intricate interplay between
theoretical considerations and experimental falsification. As computational power increases,
simulations, at the interface between theory and experiment, have taken an increasing role in
scientific discovery. In particular, first-principles calculations are indispensable for systems with
non-perturbative behavior, requiring simulations to test models against experiment. One widely
accepted and deployed method involves formulating the theory on a finite lattice and then applying
a Monte Carlo simulation. However, with increasing interest in such simulations practical and
fundamental challenges arise, such as computational demand and the numerical sign problem.

In the following, I discuss selected aspects for simulations of strongly correlated systems,
namely the Hubbard model and lattice quantum chromodynamics. This encompasses methods to
mitigate the numerical sign problem and (Bayesian) analysis of simulation results, in particular
fitting methods and the treatment of excited state contamination.

The Hubbard model describes systems of strongly correlated electrons and is used often in
studying chemical compounds. First principle studies of this model are almost exclusively done using
Monte Carlo techniques, with the exception being very small systems where direct diagonalization
methods are feasible. However, away from half filling, Monte Carlo methods struggle because of
the numerical sign problem. While the sign problem is unlikely to be completely solved, methods
that reduce its impact are very valuable in expanding the computable parameter space. Leveraging
theoretical developments on path deformations, I demonstrate that machine learning techniques can
be used to mitigate the sign problem. In particular, I train complex-valued neural networks to serve
as a parameterization of a sign-optimized manifold related to Lefschetz thimbles. These methods
were developed and tested on doped graphene sheets, modelled by a small number of ions with
periodic boundary conditions, at fixed temporal discretization and temperature.

Renewable energy is a critical aspect of modern research to reduce effects of climate change.
Despite the enormous energy cost of producing solar panels, they are a valuable element in the
electricity production. Organic solar cells show great promise in reducing costs and allowing for
flexibility. Unfortunately, to date their efficiency falls behind their silicon-based competitors. By
studying the electronic structure of certain chemical compounds that are usable for organic solar
cells, further development in this area can be fostered. This motivates my work in the molecule
C20H12 perylene, which can be used as an acceptor material in organic solar cells. This molecule
is typically not at half filling, so any simulation requires methods to mitigate the sign problem.
The study of perylene shown here requires the analysis of a large data set, of the order of O(2000)
correlators, which is only feasible with an automated analysis procedure. In this thesis I present
such an automatic routine based on Bayesian analysis using the Akaike information criterion.

Finally, I shift the focus to particle physics to calculate aspects of the internal structure of
hadrons. Hadrons are primarily governed by the strong interaction, i.e. described by quantum
chromodynamics (QCD). In this theory, the internal structure is modelled by the correlation between
spatial and momentum distributions of all constituents. Many details of these distributions remain
to be calculated. In this thesis, I use lattice QCD to calculate the 2nd moment of parton distribution
functions (PDFs) for the nucleon. These are the average momentum fractions carried by the
considered parton of the nucleon. I analyze two ensembles at the physical pion mass to obtain the
moments of unpolarized, polarized, and transversity PDF for the nucleon.
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Chapter 1

Introduction

The study of physical systems necessitates the formulation of an underlying model or theory. In the
contemporary era, these are frequently expressed as (Quantum) Field Theories (QFTs), wherein
observables are defined by an infinite-dimensional integral, referred to as the path integral

⟨O⟩ = 1
Z

∫
D [Φ] 𝑒−S[Φ]O [Φ] , (1.1)

with partition functionZ =
∫
D [Φ] 𝑒−S[Φ] . The information about the system is provided by the

action S [Φ] and the physical properties are extracted by choosing appropriate observables O. In
general, integrations of this form are challenging and analytic solutions are not known for most
interesting systems. However, using numerical integration is a well-established method in such
situations. To this end, we first introduce a regulator by discretizing space and time onto a lattice Λ,
which translates into a path integral measure of the form

D [Φ] = lim
|Λ |→∞

𝐶 (Λ)
|Λ |−1∏
𝑛=0

dΦ(x𝑛, 𝑡𝑛) . (1.2)

It is important to exercise caution when taking the limit, which can be done by integrating at finite
but increasing volume |Λ| and extrapolation.1 Once translated onto a finite grid of points (x𝑛, 𝑡𝑛),
one usually refers to a lattice QFT. The integral, at finite |Λ|, is most efficiently calculated using
Monte Carlo techniques. The central focus here is to generate random (field-)variables Φ that are
distributed according to the Boltzmann distribution

pS [Φ] =
1
Z 𝑒

−S[Φ] . (1.3)

Once an ensemble of configurations {Φ𝑛 ∼ pS [Φ𝑛]}
Ncfg−1
𝑛=0 is obtained, an observable can be

estimated via importance sampling

⟨O⟩ = lim
Ncfg→∞

Ncfg−1∑︁
𝑛=0
O [Φ𝑛] . (1.4)

In practice, only a finite number of configurations (Ncfg < ∞) can be calculated at a fixed
computational cost, which introduces a statistical uncertainty,

𝜎O ∝ 1/√Ncfg. (1.5)

1Many details are omitted in this expression, for example having multiple fields contributing, the directions can have
independent infinite volume limits, the physical volume should be treated properly, and so on. Thus this expression has to
be taken with care and has to be explicitly defined for a theory of interest, see subsequent sections.
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A meticulous data analysis via bootstrap or jackknife is essential to estimate 𝜎O . It is crucial to
recognize, that systematic sources of uncertainty may arise and must be estimated on a case by
case basis. The majority of computer time is typically allocated to the generation of ensembles,
where numerous algorithms have been developed for diverse use cases. Each algorithm obeys
inherent benefits and drawbacks, encompassing aspects such as applicability, scalability, overall
cost, and more. Throughout this thesis, different variants of the Hamiltonian Monte Carlo (HMC)
are employed due to their potential scalability to large-scale systems. The topic of lattice QFT is
exceedingly complex, encompassing a multitude of intricate details Consequently, a comprehensive
introduction in this thesis is not feasible. A plethora of textbooks have delved into this process and
known pitfalls in more depth, for example [12, 13, 14, 15].

To this point, the discussion has been kept quite general in order to facilitate the two problem sets
presented in this thesis. In the following, chapters 2 to 4, aspects of Monte Carlo simulations of the
Hubbard model, which describes carbon nanostructures such as graphene and the molecule C20H12
perylene, are discussed. In chapter 5, the focus shifts towards lattice Quantum Chromodynamics
(QCD) and the data analysis to obtain moments of polarized, unpolarized, and transversity parton
distribution functions of nucleons.

1.1 The Numerical Sign Problem

One detail, however, that comes up during chapters 2 to 4, needs to be discussed in more depth,
namely the numerical sign problem [16]. Numerical integration is generally unfeasible to apply
when the integrand of interest is strongly oscillatory. In such cases, delicate cancellation forces any
integration method to evaluate a potentially gigantic number of supporting points, or configurations
for Monte Carlo integrations, to achieve a desired precision. Especially, in systems of (strongly)
interacting fermions, where the problem is cast into a lattice QFT, the sign problem can become
insurmountable with finite computational resources.

To understand the presence of the oscillating integrands one has to consider that fermions obey
the Pauli exclusion principle. This means, that the fermionic wave functions change sign when two
fermions are interchanged. A changing sign, therefore, means an oscillation which only increases
with the number of fermions considered, as the interchange happens more frequently. Now notice,
that typical path integrals do not directly involve fermions, but are rather cast into a form that deals
only with bosonic fields. This is typically achieved by integrating out the fermionic degrees of
freedom using the Matthews–Salam formula [17, 18, 14]

det{𝑀} =
∫
D

[
𝜓, 𝜓

]
𝑒𝜓·𝑀 ·𝜓 . (1.6)

Here, 𝜓 = (𝜓1, . . . , 𝜓 |Λ |), and 𝜓 = (𝜓1, . . . , 𝜓 |Λ |) denote a set of generators for the 2|Λ|-Grassman
algebra, representing the fermionic fields. Additionally, the |Λ| × |Λ| matrix 𝑀 ∈ Mat |Λ | (C) is
called the fermion matrix. The latter depends on the action of interest and in particular on the
discretization of the continuum theory [19]. Furthermore, depending on the form of the fermion
matrix the sign problem may arise as an oscillating complex phase problem due to a complex
valued determinants entering the action. 2 This is typically also called the sign problem. Many
(quantum) field theories with fermions are plagued by some form of the sign problem. However,
in certain situations one can choose or design fermion determinants that are manifestly real and
positive. For example, one might argue for using det

{
𝑀𝑀†

}
= |det{𝑀}|2. In particular, in lattice

QCD, discussed in chapter 5, this is done by treating the light (up- and down-) quarks with equal
mass, namely (2+X) flavors, and exploiting the 𝛾5-hermiticity of the Wilson fermion matrix [14].

2It is also possible to find a determinant that is sign indefinite, opposed to complex valued. Also for an indefinite sign
delicate cancellations are present requiring a very precise integration. This forms the original meaning of "sign problem".
For the sake of the following chapters, we will discuss the complex action case only.
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Coming back to the Monte Carlo integration, with a sign problem the Boltzmann distribution is
not a proper probability distribution anymore as

S [Φ] ∈ C⇒ pB [Φ] ∼ 𝑒− Re{S[Φ] }𝑒− i Im{S[Φ] } ∈ C ⊈ [0, 1] (1.7)

This formal issue, however, can be resolved by implementing the additional phase 𝑒− i Im{S[Φ] } into
the observable and generating the Markov chain using the real part of the action only. Resulting, the
phase reweighted observables

⟨O⟩ ≡ ⟨𝑂⟩S =

∫
D [Φ] 𝑒− Re{S[Φ] }−i Im{S[Φ] }O [Φ]∫
D [Φ] 𝑒− Re{S[Φ] }−i Im{S[Φ] }

=
1/ZRe{S}

∫
D [Φ] 𝑒− Re{S[Φ] }−i Im{S[Φ] }O [Φ]

1/ZRe{S}

∫
D [Φ] 𝑒− Re{S[Φ] }−i Im{S[Φ] }

=

〈
O𝑒− i Im{S}〉

Re{S}〈
𝑒− i Im{S}

〉
Re{S}

,

(1.8)

where the subscript action encodes how the Markov chain is generated. This poses no solution to
the sign problem, since the integrand is still oscillating strongly but gives room for improvement. In
fact, it has been shown [20] that the statistical uncertainty, compare equation 1.5, is related to the
magnitude of the phase as

Ncfg → Neff
cfg =

���〈𝑒− i Im{S}〉���2Ncfg. (1.9)

Noticing that the average phase decays with the extensive phase-quenched potential [20] of the
theory, implies an exponential decay in space time volume 𝛽 |Λ|���〈𝑒− i Im{S}〉��� ∼ 𝑒−𝛽 |Λ | (1.10)

Many techniques have been studied to improve upon the sign problem, including deformations
to Lefschetz thimbles [21], complex Langevin [22], and many more. In this thesis, a particular focus
lays on contour deformation towards sign-optimized manifolds inspired by Lefschetz thimbles [23].
However, it is expected that the sign problem is NP-complete [16], making it very unlikely that a
general solution can be found. Thus, all methods discussed here thus must be understood as partial
improvements to equation (1.10) to extend the efficiently-computable parameter space of a given
theory.

1.2 The Hubbard Model

The Hubbard model is a quantum model that describes system’s of strongly correlated electrons on
a fixed spatial lattice. Its Hamiltonian reads

H [𝜅,𝑈, 𝜇] = −𝜅
∑︁
⟨𝑥,𝑦⟩∈𝑋

(
𝑝†𝑥 𝑝𝑦 − ℎ†𝑥ℎ𝑦

)
+ 𝑈

2

∑︁
𝑥∈𝑋

𝑞2
𝑥 − 𝜇

∑︁
𝑥∈𝑋

𝑞𝑥 . (1.11)

Notice, this form makes a particular choice of basis, namely the particle-hole basis. In terms of
electron creation and annihilation operators, 𝑒†𝜎 and 𝑒𝜎 , respectively, where 𝜎 denotes the spin,
𝜎 ∈ {↑, ↓}, the particle and hole operators are

𝑝†𝑥 = 𝑒
†
↑,𝑥 𝑝𝑥 = 𝑒↑,𝑥 (1.12)

ℎ†𝑥 = 𝑒↓,𝑥 ℎ𝑥 = 𝑒
†
↓,𝑥 . (1.13)
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We choose this basis as, for 𝜇 = 0, the systems ground state is half filled and thus electrically neutral.
In particular, carbon-based molecules that are sp2 hybridized are excellent targets for this model.
Here the 𝜎-electrons form the bonds of the ions that give the spatial lattice a fixed form. One should
note that the Hubbard model is only an effective approximation, as for example vibrational modes
are not included. This approximation holds especially in cold temperatures. The lattice of ions is
denoted by 𝑋 , this can include a lattice with boundary conditions mimicking an infinite system but
also a finite set of ions with open boundary conditions. For later reference, the number of ions is
typically written as Nx = |𝑋 |. We refer to ions, as only the 𝜎-electrons are assumed to be fixed
leaving possibly empty orbitals. In addition, the 𝜋-electrons are free to interact and move on the
lattice. Sometimes, within this thesis, a lattice is understood as a graph giving the ions the notion of
sites in the lattice.

The Hubbard model incorporates the hopping of electrons between neighboring sites along
the bonds with the first term in equation 1.11. Whereby, neighbouring sites are denoted by
⟨𝑥, 𝑦⟩ ∈ 𝑋 . Typically, it is called tight-binding, Hückel, or non-interacting term as it corresponds to
the non-interacting theory, i.e. at vanishing interaction 𝑈 = 0. The hopping strength, in general
depending on the bond length, is denoted by 𝜅. For simulations it is convenient to normalize the
hopping strength, 𝜅 = 1, and provide everything in relative units, i.e. 𝑈/𝜅, 𝜇/𝜅, and so on; this will
be suppressed unless otherwise stated. The non-interacting theory can be solved analytically by
considering that the hopping terms can be written in matrix form

𝜅
∑︁
⟨𝑥,𝑦⟩∈𝑋

(
𝑝†𝑥 𝑝𝑦 − ℎ†𝑥ℎ𝑦

)
→

∑︁
𝑥,𝑦∈𝑋

(
𝑝†𝑥𝐾

𝑥𝑦 𝑝𝑦 − ℎ†𝑥𝐾 𝑥𝑦ℎ𝑦
)

(1.14)

with the hopping matrix 𝐾 = 𝜅𝛿⟨𝑥,𝑦⟩ formed with the hopping strength and adjacency matrix

𝛿⟨𝑥,𝑦⟩ =

{
1 𝑥 is nearest neighbour of 𝑦
0 else.

(1.15)

This explicitly assumes uniform hopping strength but can simply be extended to a more general
setup by relating 𝛿⟨𝑥,𝑦⟩ ∼ 𝜅𝑥,𝑦 . A few constraints need to be fulfilled such as 𝐾 = 𝐾†. Exemplary
hopping matrices, used in the following chapters, are plotted alongside their graph representation in
figures 1.1 and 1.2. The former represents a graphene sheet built out of Nx = 18 ions with periodic
boundary conditions drawn as dotted lines [24, 25]. Additionally, the latter represents the molecule
C20H12 perylene built upon Nx = 20 ions, no periodic boundaries are applied as this is the entire
molecule [26, 3]. The blue encoded bonds correspond to the squares on the right side. The position
of a colored square indicates a non-zero entry in the adjacency matrix.

Now, finding a unitary transformation that diagonalizes the hopping matrix

𝔘𝐾𝔘† = diag(𝜖𝑘) (1.16)

solves the non-interacting theory. It can be shown that each row of 𝔘 can be associated
with an operator 𝑝†

𝑘
= 𝔘 𝑥

𝑘
𝑝
†
𝑥 which commutes with the non-interacting Hamiltonian 𝐻0 =

−𝜅∑⟨𝑥,𝑦⟩∈𝑋 (
𝑝
†
𝑥 𝑝𝑦 − ℎ†𝑥ℎ𝑦

) [
𝐻0, 𝑝

†
𝑘

]
= 𝜖

𝑘
𝑝
†
𝑘

(1.17)

For translationally invariant (infinite) systems with periodic boundary conditions, for example
the 18-site problem, the unitary transformation can be found by a lattice Fourier transformation
defining a lattice momentum 𝑘 . For systems with open boundary, for example perylene, the unitary
transformation can be found by constructing eigenvectors that transform irreducibly under the
respective symmetry group, here 𝐷2ℎ. This defines indices 𝑘 = Λ𝑖 , which label the corresponding
irreducible representation Λ and potentially an index 𝑖 of mixing states.
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Figure 1.1: Left, lattice of ions for the 18-site problem representing a very small piece of graphene,
used in chapter 2. Ions are shown as vertices, light blue balls, and allowed hopping is indicated
through edges, blue lines. The dotted lines explicitly show the periodic boundary conditions. Right,
the adjacency matrix as heat map, the exact form depends on the numbering of vertices. Blue
squares represent non-zero entries in the hopping matrix, while the orange squares indicate those
entries affected by chemical potential.
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Figure 1.2: Left, lattice of ions for the molecule C20H12 perylene, used in chapters 3 and 4. Ions
are, again, shown as vertices, light blue balls, and allowed hopping is indicated through edges,
blue lines. This molecule, has only a finite amount of ions, hence the lattice is set up with open
boundaries. Right, the adjacency matrix as heat map, the exact form depends on the numbering of
vertices. Blue squares, again, represent non-zero entries in the hopping matrix, while the orange
squares indicate those entries affected by chemical potential.
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Defects or doping are modelled by adding a chemical potential, 𝜇, coupling to the charge
expressed as the difference between number of holes and particles 𝑞𝑥 = ℎ

†
𝑥ℎ𝑥 − 𝑝†𝑥 𝑝𝑥3. The

third term of the Hamiltonian in equation (1.11) represents this. This does not add any additional
complication to the analytical solution as it can be understood as diagonal terms on the hopping
matrix, consequently, being drawn in figures 1.1 and 1.2 as orange squares on the diagonal. For
simplicity, the chemical potential models an average doping over the entire lattice. However, it is
simple to extend this by introducing a site dependent chemical potential at the cost of breaking
certain symmetries of the hopping term. This simplification requires to calculate the total system
charge

⟨𝑄⟩ =
∑︁
𝑥∈𝑋
⟨𝑞𝑥⟩ , (1.18)

to quantify the effect of a certain chemical potential value.
In addition to the tight-binding dynamics, electrons can interact amongst themselves via the

Coulomb interaction. This interaction is screened due to the 𝜎 electrons and the core ions, and can
be modelled as an on-site effective interaction,𝑈, that couples to the square of the local charge, 𝑞2

𝑥 .
This represents one of the simplest approximations to electron correlations in such low-dimensional
systems. Extending the interaction beyond on-site then leads to so called extended Hubbard models,
for example the Pariser–Parr–Pople model [27, 28].

Once interactions are introduced, an analytic solution is out of reach for larger systems. This is
where Monte Carlo methods may be used to get further understanding of the physics. As a quantum
model, this does not provide a path integral out of the box. However, a connection can be made to
the thermal trace [29, 30, 30, 31, 24]

⟨O⟩ =
tr
{
𝑒−𝛽HO

}
tr
{
𝑒−𝛽H

} , (1.19)

defining observables. Concentrating on the partition function, the first step is to split the exponential
into Nt ’time’ slices

Z = tr
{
𝑒−𝛽H

}
= tr

{
𝑒𝛿H · 𝑒𝛿H · · · 𝑒𝛿H︸                  ︷︷                  ︸

Nt factors

}
, (1.20)

where the temporal lattice spacing 𝛿 = 𝛽/Nt is introduced. The thermal trace makes use of Euclidean
time, that does not coincide with real time, and implies (anti-)periodic boundary conditions. In
comparison to equation (1.2), this forms the only discretization we have to perform as the spatial
components are naturally discrete on the set of ions.

The second step in arriving at a path integral is to insert 2Nt Grassmanian resolutions of identity,
one Nt-set for the particles (Ψ) and one Nt-set for the holes (𝜂), using coherent states

1𝑡 =

∫
D

[
Ψ∗𝑡 ,Ψ𝑡 , 𝜂

∗
𝑡 , 𝜂𝑡

]
𝑒−

∑
𝑥∈𝑋 Ψ∗𝑡,𝑥Ψ𝑡,𝑥+𝜂∗𝑡,𝑥 𝜂𝑡,𝑥 |Ψ𝑡 , 𝜂𝑡⟩⟨Ψ𝑡 , 𝜂𝑡 | (1.21)

between the Nt factors and evaluating the trace in this basis. One arrives at [24, 32]

Z =

∫
D [Ψ∗,Ψ, 𝜂∗, 𝜂]

Nt−1∏
𝑡=0

𝑒
−∑

𝑥∈𝑋 Ψ∗
𝑡+1,𝑥Ψ𝑡+1,𝑥+𝜂

∗
𝑡+1,𝑥 𝜂𝑡+1,𝑥

〈
Ψ𝑡+1,𝑥 , 𝜂𝑡+1,𝑥

��𝑒𝛿H ��Ψ𝑡 ,𝑥 , 𝜂𝑡 ,𝑥〉
(1.22)

To continue we can focus on the matrix elements
〈
Ψ𝑡+1,𝑥 , 𝜂𝑡+1,𝑥

��𝑒𝛿H ��Ψ𝑡 ,𝑥 , 𝜂𝑡 ,𝑥〉 first. Inserting the
Hubbard Hamiltonian, equation (1.11), into the exponent takes the form〈

Ψ𝑡+1,𝑥 , 𝜂𝑡+1,𝑥
��𝑒𝛿H ��Ψ𝑡 ,𝑥 , 𝜂𝑡 ,𝑥〉

=
〈
Ψ𝑡+1,𝑥 , 𝜂𝑡+1,𝑥

��𝑒−𝛿𝜅 ∑
⟨𝑥,𝑦⟩∈𝑋

(
𝑝
†
𝑥 𝑝𝑦−ℎ†𝑥ℎ𝑦

)
+ 𝛿𝑈2

∑
𝑥∈𝑋 𝑞

2
𝑥−𝛿𝜇

∑
𝑥∈𝑋 𝑞𝑥

��Ψ𝑡 ,𝑥 , 𝜂𝑡 ,𝑥〉 (1.23)

3It should be noted, that in the chapters 2 and 3, a different convention is employed, where 𝜇 and 𝑞𝑥 are expressed
with a negative sign. The convention presented here aligns with that of chapter 4.
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We can split the exponential using the Baker-Campbell-Dynkin-Hausdorff formula in a specific
form. Let K be the hopping contribution including the chemical potential andV be the interation
part, a symmetric trotterization

𝑒𝛿K+𝛿V = 𝑒
𝛿
2 K · 𝑒𝛿V · 𝑒 𝛿2 K + O

(
𝛿3

)
(1.24)

leads to order O
(
𝛿3) errors. Using this result we can express the exponential of equation (1.23) by

𝑒
− 𝛿2 𝜅

∑
⟨𝑥,𝑦⟩∈𝑋

(
𝑝
†
𝑥 𝑝𝑦−ℎ†𝑥ℎ𝑦

)
− 𝛿2 𝜇

∑
𝑥∈𝑋 𝑞𝑥 · 𝑒 𝛿𝑈2

∑
𝑥∈𝑋 𝑞

2
𝑥 · 𝑒−

𝛿
2 𝜅

∑
⟨𝑥,𝑦⟩∈𝑋

(
𝑝
†
𝑥 𝑝𝑦−ℎ†𝑥ℎ𝑦

)
− 𝛿2 𝜇

∑
𝑥∈𝑋 𝑞𝑥 , (1.25)

where we suppress the error O
(
𝛿3) . At this point it is important to emphasize that this exponent

contains quartic terms of fermionic ladder operators, as 𝑞2
𝑥 ∼ 𝑝

†
𝑥 𝑝𝑥ℎ

†
𝑥ℎ𝑥 . These will later be

troublesome and have to be taken care of. Thus a linearization of the 𝑞𝑥’s is insurmountable; Using
a continuous Hubbard-Stratonovich transformation can achieve this at the cost of introducing an
auxiliary field (Φ𝑡 ,𝑥) ∈ RNt×Nx ,

𝑒
𝛿𝑈
2

∑
𝑥∈𝑋 𝑞

2
𝑥 ∝

∫
D [Φ𝑡 ] 𝑒

1
2𝛿𝑈

∑
𝑥∈𝑋 Φ2

𝑡,𝑥−i
∑
𝑥∈𝑋 Φ𝑡,𝑥𝑞𝑥 , (1.26)

where the overall normalization is irrelevant as it cancels in the observables as usual. Notice, this
is not the only choice of the Hubbard-Stratonovich transformation, naturally one can do it in the
real channel iΦ → Φ if the sign of the interaction 𝑈 changes or in the spin formulation of the
Hubbard model, going back to the electron ladder operators. Also a discrete Hubbard-Stratonovich
transformation could be utilized. All these result in different formulations of the Hubbard model
with different advantages and drawbacks. This particular choice is made as a continuous field allows
one to use the Hamiltonian Monte Carlo algorithm to generate configurations; the choice of the
imaginary channel allows to relate the sign problem to an oscillating complex phase and not to
an undetermined sign, as can be seen later. After Hubbard transformation the exponentials 𝑒𝛿/2K ,
from equation (1.25), and the remaining operator exponential 𝑒− iΦ𝑡 ·𝑞 , from equation (1.26), can be
recombined by introducing another O

(
𝛿3) error, resulting in∫

D [Φ𝑡 ] 𝑒−
1

2𝛿𝑈
∑
𝑥∈𝑋 Φ2

𝑡,𝑥 · 𝑒−𝛿𝜅
∑
⟨𝑥,𝑦⟩∈𝑋

(
𝑝
†
𝑥 𝑝𝑦−ℎ†𝑥ℎ𝑦

)
−i

∑
𝑥∈𝑋 Φ𝑥𝑞𝑥−𝛿𝜇

∑
𝑥∈𝑋 𝑞𝑥 + O

(
𝛿3

)
(1.27)

From here we can read off a matrix 𝐴𝑥𝑦 = 𝛿 (𝐾 𝑥𝑦 + 𝜇𝛿𝑥𝑦) + iΦ𝑡 ,𝑥 such that the exponential is
written in the form ∫

D [Φ𝑡 ] 𝑒−
1

2𝛿𝑈
∑
𝑥∈𝑋 Φ2

𝑡,𝑥 · 𝑒
∑
𝑥,𝑦∈𝑋 𝑝

†
𝑥𝐴

𝑥𝑦 𝑝𝑦−ℎ†𝑥𝐴𝑥𝑦ℎ𝑦 (1.28)

In this form the matrix element (1.23) can be evaluated by using the well known relation between
ladder operators, 𝑐 ∈ {𝑝, ℎ}, and coherent states, |𝜉⟩ ∈ {|𝜓⟩ , |𝜂⟩}, [33]

⟨𝜉 |𝑒
∑
𝑥∈𝑋 𝑐

†
𝑥𝐴

𝑥𝑦𝑐𝑦 |𝜉′⟩ = 𝑒
∑
𝑥∈𝑋 𝜉

∗
𝑥 [𝑒𝐴]𝑥𝑦 𝜉 ′𝑦 (1.29)

resulting in 〈
𝜓𝑡+1,𝑥 , 𝜂𝑡+1,𝑥

��𝑒𝛿H ��𝜓𝑡 ,𝑥 , 𝜂𝑡 ,𝑥〉 = (1.30)∫
D [Φ𝑡 ] 𝑒−

1
2𝛿𝑈Φ2

𝑡 · 𝑒
∑
𝑥,𝑦∈𝑋 𝜓

∗
𝑡+1,𝑥 [𝑒𝛿𝐾+𝛿𝜇+iΦ𝑡 ]𝑥𝑦𝜓𝑡𝑦+𝜂∗𝑡+1,𝑥 [𝑒−𝛿𝐾−𝛿𝜇−iΦ𝑡 ]𝑥𝑦𝜂𝑡 + O

(
𝛿3

)
,
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Inserting this result into the partition function sums up Nt terms of the error leaving a total error of
O

(
𝛿2) , and we get

Z =

∫
D [Φ] D [𝜓∗, 𝜓, 𝜂∗, 𝜂] exp

{
− 1

2𝛿𝑈

∑︁
𝑡 ,𝑥∈Λ

Φ2
𝑡 𝑥

}
× exp

{ ∑︁
𝑡 ,𝑥;𝑡 ′ ,𝑦∈Λ

𝜓∗𝑡 𝑥

(
𝛿𝑥𝑦𝛿𝑡𝑡 ′ −

[
𝑒𝛿𝐾+𝛿𝜇+iΦ𝑡

]
𝑥𝑦
𝛿𝑡+1,𝑡 ′

)
𝜓𝑡 ′𝑦

+
∑︁

𝑡 ,𝑥;𝑡 ′ ,𝑦∈Λ
𝜂∗𝑡 𝑥

(
𝛿𝑥𝑦𝛿𝑡𝑡 ′ −

[
𝑒−𝛿𝐾−𝛿𝜇−iΦ𝑡

]
𝑥𝑦
𝛿𝑡+1,𝑡 ′

)
𝜂𝑡 ′𝑦

}
+ O

(
𝛿2

)
(1.31)

where the diagonal terms 𝛿𝑡𝑡 ′ come from the exponential factor in (1.21). I use a typical notation [14],
that incorporates the anti-periodic boundary condition into the Kronecker-delta such that

𝛿𝑡+1,𝑡 ′ ≡ B𝑡 ′𝛿 (𝑡+1)%Nt , 𝑡 ′%Nt (1.32)

where the anti-periodic boundary condition, B𝑡 ′ = −1 if 𝑡′ = Nt and B𝑡 ′ = +1 otherwise as well
as 𝛿Nt ,Nt−1 = 𝛿0,Nt−1, is implied. From here we can immediately read off the fermion matrix, in
exponential discretization,

𝑀 [Φ | 𝐾, 𝜇]𝑡 ,𝑥;𝑡 ′ ,𝑦 = 𝛿𝑥𝑦𝛿𝑡𝑡 ′ −
[
𝑒𝛿𝐾+𝛿𝜇

]
𝑥𝑦
𝑒i 𝛿Φ𝑡𝑥𝛿𝑡+1,𝑡 ′ . (1.33)

In various publications, for example [32, 25, 19], a variety of other discretizations have been used
with advantages and drawbacks detailed in [19]. These can be derived from here by expanding the
exponential to first order 𝑁 = 1

[
𝑒±𝛿𝐾±𝛿𝜇

]
𝑥𝑦

=

[
𝑁∑︁
𝑛=0

1
𝑛!
(±𝛿𝐾 ± 𝛿𝜇)𝑛

]
𝑥𝑦

+ O
(
𝛿𝑁+1

)
. (1.34)

Computationally interesting is the case 𝑁 = 2 as it does not increase the error found in the partition
function after trotterization (1.31). The sparse spatial part of the fermion matrix can reduce
computational cost if implemented properly4. As the fermion matrix with +Φ comes from the 𝜓
coherent states associated with the particle degrees of freedom, it is often referred to as the particle
fermion matrix; similarly, the fermion matrix with −Φ comes from the 𝜂 resulting in the notion of
the hole fermion matrix

𝑀 𝑝 [Φ] = 𝑀 [ Φ | 𝐾, 𝜇] (1.35)

𝑀ℎ [Φ] = 𝑀 [−Φ | −𝐾,−𝜇] . (1.36)

To continue towards the final path integral form, the fermionic degrees need to be integrated out
using the Metthews-Salam formula (1.6) resulting in the Hubbard action

S [Φ] = 1
2𝛿𝑈

Φ2 − log det{𝑀 [Φ|𝐾, 𝜇]} − log det{𝑀 [−Φ| − 𝐾,−𝜇]}. (1.37)

And the partition function reduces, up to an overall irrelevant constant, to

Z =

∫
D [Φ] 𝑒−S[Φ] + O

(
𝛿2

)
. (1.38)

4This has been discussed within the group, in particular with Dr. Evan Berkowitz, we have not found any reference
applying this and plan to test this in the future.
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Bipartite
Non-Bipartite

Figure 1.3: Example for bipartite lattice, hexagon on the left, and a non-bipartite lattices, pantagon
on the right.

The entire observable is treated in a similar way providing a path integral of the form (1.1).
From the action given in equation (1.37) it is not clear that it is real valued. In fact, it is only in

a very specific cases of zero chemical potential on a bipartite lattice. Consider a bipartite lattice,
that is the lattice sites can be colored with two colors such that neighbours have different colors, see
figure 1.3 for examples. On non-bipartite lattices one typically finds frustrated bonds - colored in
gray - which is not the case for bipartite lattices. At zero chemical potential, we can interchange the
role of particles and holes leaving the interaction term invariant,

(𝑝†𝑥 𝑝𝑥 − ℎ†𝑥ℎ𝑥)2 → (ℎ†𝑥ℎ𝑥 − 𝑝†𝑥 𝑝𝑥)2. (1.39)

However, the hopping term obtains an additional minus sign,

𝑝†𝑥𝐾
𝑥𝑦 𝑝𝑦 − ℎ†𝑥𝐾 𝑥𝑦ℎ𝑦 → −(ℎ†𝑥𝐾 𝑥𝑦ℎ𝑦 − 𝑝†𝑥𝐾 𝑥𝑦 𝑝𝑦). (1.40)

We can further impose 𝐾 𝑥𝑦 → Σ𝑥𝐾 𝑥𝑦Σ𝑦 with a diagonal matrix Σ that has diagonal entries
Σ𝑥 = −1 on one sublattice, defined by the bipartiteness, and Σ𝑥 = +1 else. Together with the
interchange of particles and holes we recover the original Hamiltonian as over the sublattice each
term picks up exactly one sign

𝑝†𝑥𝐾
𝑥𝑦 𝑝𝑦 − ℎ†𝑥𝐾 𝑥𝑦ℎ𝑦 → 𝑝†𝑥Σ

𝑥𝐾 𝑥𝑦Σ𝑦 𝑝𝑦 − ℎ†𝑥Σ𝑥𝐾 𝑥𝑦Σ𝑦ℎ𝑦 = 𝑝†𝑥𝐾 𝑥𝑦 𝑝𝑦 − ℎ†𝑥𝐾 𝑥𝑦ℎ𝑦 (1.41)

Thus interchanging particles with holes and transforming 𝐾 → Σ𝐾Σ leaves the interacting
Hamiltonian invariant. Now this implies two important aspects, first, the single particle spectrum at
zero chemical potential on a bipartite lattice must be symmetric around zero. Effectively describing
half the states with negative energy, this is the Fermi sea. We say the system is half filled because
these negative energy states are filled in the ground state. Second, using Σ2 = 1 in the fermion
matrix determinant allows us to replace 𝐾 → −𝐾 in one of the fermion matrices. This together
with the fact that 𝐾 = 𝐾† and complex conjugation sends Φ→ −Φ allows to show that the fermion
matrix determinant over both particles and holes is real and positive semi-definite,

det
{
𝑀 [Φ|𝐾, 𝜇 = 0] 𝑀 [−Φ|−𝐾, 𝜇 = 0]

}
= det

{
𝑀 [Φ|𝐾, 𝜇 = 0] 𝑀 [−Φ| 𝐾, 𝜇 = 0]

}
= det

{
𝑀 [Φ|𝐾, 𝜇 = 0] 𝑀 [ Φ| 𝐾, 𝜇 = 0]†

}
∈ R+.

(1.42)

At finite chemical potential or when the lattice is non-bipartite this can not be applied and we
encounter a complex valued action.
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1.2.1 Simple Ways Around the Sign Problem

In the formulation at hand, two simple and semi-analytically determined transformations can
mitigate the sign problem, consequently extend the efficiently-computable parameter space. These
are used throughout the chapters 2 to 4. The first, and simplest, is what we call tangent plane;
the second is the next-to-leading order plane (NLO-plane), being a perturbative correction to the
tangent plane. But let us start at the beginning; For a theory with sign problem a method to reduce
the sign problem is path deformation onto a manifoldM which has a more optimal phase property

⟨𝑂⟩ = 1
Z

∫
R|Λ|
D [Φ] 𝑒−S[Φ]O [Φ] (1.43)

=
1
Z

∫
M
D [𝜑] 𝑒−S[𝜑 ]O [𝜑] . (1.44)

This works as long as action as well as observable are holomorphic functions in 𝜑. Furthermore,
the manifoldM is required to be in the same homology class as R |Λ | . These requirements are
necessary to apply Cauchys integral theorem [23]. Here the space time lattice is denoted by
Λ = [0,Nt − 1] ⊗ 𝑋 .

One of the most prominent ways of utilizing path deformations are Lefschetz thimbles [21].
Here a complex manifoldM𝜎 is defined as the image under the holomorphic flow equation

dΦ𝑡 𝑥 (𝜏 𝑓 )
d𝜏 𝑓

= ±
(
𝜕S

[
Φ(𝜏 𝑓 )

]
𝜕Φ𝑡 𝑥 (𝜏 𝑓 )

)∗
, (1.45)

where we collect all thimbles that the flow intersectsM = ∪𝜎M𝜎 . We identify a solution to the
holomorphic flow equation by saddle points, that are fixed points, called critical points Φ𝜎 cr(

𝜕S [Φ]
𝜕Φ𝑡 𝑥

)∗����
Φ=Φ𝜎 cr

= 0. (1.46)

Naively integrating the holomorphic flow equation is analytically infeasible but can be done using
for example Runge-Kutta algorithms. This tends to be expensive but for smaller systems greatly
reduces the sign problem. There are certain caveats to this, such as choosing the maximal flow time
𝜏max
𝑓

, which will not be discussed here. Instead we focus on a specific case, the classical solution to
the flow.

For the Hubbard model described above, constant fields can be seen as classical solutions, in
particular the configuration that is zero everywhere, e.g. Φ𝑡 𝑥 = 0∀𝑡, 𝑥 ∈ Λ corresponding to the
non-interacting,𝑈 = 0, theory can be used to probe certain properties. Inserting this constrain into
the holomorphic flow equation (1.46) yields a purely imaginary solution i 𝜙0 that can be used to
define [7]

ΦTP
𝑡 𝑥 = Φ𝑡 𝑥 + i 𝜙0 (1.47)

𝜙0

𝛿
= − 𝑈

Nx

∑︁
𝑘

tanh
{
𝛽

2

[
𝜖𝑘 + 𝜇 +

𝜙0

𝛿

]}
. (1.48)

This manifoldMTP is parallel to the real plane and does not impose any computational constraints
as it is a simple shift of every configuration into the complex plane. It touches the "main thimble",
the thimble contributing most to the path integral, at exactly one point, hence it is called the tangent
plane. However, Gäntgen et.al. went further and included a quantum correction to this saddle point
finding an effective action

Seff
[
ΦTP] = S

[
ΦTP] − 1

2
log det

{
HS[ΦTP]

}
, (1.49)
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with the hessian
HS[ΦTP] =

𝜕

𝜕Φ𝑡 ′𝑥′

𝜕

𝜕Φ𝑡 𝑥
S [Φ]

����
Φ=ΦTP

. (1.50)

A solution 𝜙1 to the holomorphic flow equation of this effective action, under the constrain of
constant fields, can be found numerically in negligible time and serves as another constant shift into
the complex plane

ΦNLO = Φ𝑡 𝑥 + i 𝜙1. (1.51)

Chapter 4 heavily uses this result.
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1.3 Lattice Quantum Chromodynamics

Changing the scale of interest to a single nucleon a vastly different theory is required to be
investigated, Quantum Chromodynamics (QCD). The nucleon is governed primarily by the strong
interaction, whose degrees of freedom are the fundamental quarks – that are the up (u), down (d),
strange (s), charm (c), top (t), and bottom (b) quarks – and the gluons. QCD is described in the
continuum by the action

SQCD

[
𝐴,Ψ,Ψ

]
=

∑︁
𝑓 ={𝑢,𝑑, · · · }

∫
d4𝑥 Ψ

𝑓 (𝑥)
[
𝛾𝜇D𝜇 + 𝑚 𝑓

]
Ψ 𝑓 (𝑥)

+ 1
2𝑔2

∫
d4𝑥 tr

{
𝐹𝜇𝜈 (𝑥)𝐹𝜇𝜈 (𝑥)

} (1.52)

where the Dirac spinors Ψ 𝑓 (𝑥)𝛼𝑎 come with an index 𝑓 indicating the quark flavor, a color index 𝑎
contracted with the gauge field 𝐴 ∈ 𝔰𝔲(3), and a Dirac index 𝛼 contracted with the gamma matrices
𝛾𝜇. The latter are solutions of the 4-dimensional Clifford algebra,

{𝛾𝜇, 𝛾𝜈} = 2𝜂𝜇,𝜈 (1.53)

where we use the Minkowski metric 𝜂𝜇𝜈 = diag(1,−1,−1,−1). Furthermore, the fermionic part of
the action makes use of the covariant derivative

D𝜇 = 𝜕𝜇 + i 𝐴𝜇 (𝑥). (1.54)

The field strength tensor used to form the pure gauge part of the action is represented by

𝐹𝜇𝜈 (𝑥) = 𝜕𝜇𝐴𝜈 (𝑥) − 𝜕𝜈𝐴𝜇 (𝑥) (1.55)

This action can be divided into two parts, the fermion action Sfermion

[
𝐴,Ψ,Ψ

]
, and the gauge

action Sgauge [𝐴], respectively. These are formulated from the beginning as a quantum field theory,
so observables are expressed in terms of the path integral

⟨O⟩ = 1
Z

∫
D

[
𝐴,Ψ,Ψ

]
𝑒
− i S

[
𝐴,Ψ,Ψ

]
O

[
𝐴,Ψ,Ψ

]
. (1.56)

There is one crucial difference to equation (1.1), that is the Boltzmann weight comes as a phase. This
would naturally pose a sign problem. However, for many interesting observables, in particular for
hadron spectroscopy and structures, it is sufficient to analytically continue into the Euclidean space
effectively mapping the path integral formulation to statistical physics. This analytic continuation is
called Wick-rotation and sends

𝑡 → 𝜏 = i 𝑥0, (1.57)

mapping the line element in Minkowski space to one in a Euclidean space

d𝑠2 = d𝑥2
0 − d𝑥2

1 − d𝑥2
2 − d𝑥2

3 −→ (i d𝑥0)
2 − d𝑥2

1 − d𝑥2
2 − d𝑥2

3 (1.58)

where the metric tensor changes from 𝜂𝜇𝜈 → 𝛿𝜇𝜈 . The additional imaginary unit appears in the
integral of the QCD action∫

d4𝑥 =

∫
d𝑡 d𝑥 d𝑦 d𝑧 −→ i

∫
d𝜏 d𝑥 d𝑦 d𝑧 ≡ i

∫
d4𝑥 , (1.59)

canceling the one in the exponent of the Boltzmann weight.
In many situations lattice QCD has an inherent sign problem, for examples at finite baryon

chemical potential or with a Θ-term. However, when these are not considered the sign problem
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stemming from fermions can be treated explicitly. To understand this, consider the Wilson fermion
matrix, a discretization that will be used in this thesis,

M 𝑓

Wilson [𝑈]𝑥𝑦 =
(
𝑚 𝑓 + 4/𝑎

)
− 1

2𝑎

4∑︁
𝜇=0
(1 − 𝛾𝜇)𝑈𝜇 (𝑥)𝛿𝑥+�̂�,𝑦 + (1 + 𝛾𝜇)𝑈†𝜇 (𝑥 − �̂�)𝛿𝑥− �̂�,𝑦 . (1.60)

Fermion matrices of this form obey 𝛾5-hermiticity, 𝛾5M𝛾5 = M†. Assuming two degenerate flavors,
that is two quarks with the same mass, allows to make the fermion determinant positive definite,

det{M} = det
{
𝛾5M𝛾5} = det

{
M†

}
⇒ det{MM} = det

{
MM†

}
∈ R+

(1.61)

The degenerate flavors can be justified by considering that the light quarks, up and down, have
approximately the same mass, 𝑚𝑢

MS
= 2.16+0.49

−0.26MeV ≈ 4.67+0.48
−0.17MeV = 𝑚𝑑

MS
, especially when

compared to the strange mass𝑚𝑠
MS

= 93.4+8.6−3.4MeV [34] which modern simulations typically include.
For the strange quark, the fermion determinant is usually squared and square-rooted to make it
positive definite, yielding a real and positive fermion action [35]. These operations are implemented
using an RHMC, see [14] for more details.

To complete the discussion about discretization, the gauge action can be discretized using the
Wilson gauge action [14],

SWilson−Gauge [𝑈] =
2
𝑔2

∑︁
𝑥∈Λ

∑︁
𝜇,𝜈∈[0,3]
𝜇<𝜈

Re
{
Tr

{
1 −𝑈𝜇𝜈 (𝑥)

}}
, (1.62)

where we use the plaquette,𝑈𝜇𝜈 (𝑥) = 𝑈𝜇 (𝑥)𝑈𝜈 (𝑥+�̂�)𝑈†𝜇 (𝑥+�̂�)𝑈†𝜇 (𝑥).A multitude of discretizations
for the gauge and fermion action exist, targeting various objectives, including enhanced continuum
limits, computational tractability, and more. A comprehensive overview of potential optimisation
can be found in chapters 9 and 10 of [14]. Bringing all this together, observables can be expressed
on the lattice path integral via

⟨O⟩ =
∫
D [𝑈] 𝑒−SWilson−Gauge [𝑈 ]−log det

{
M𝑢𝑑 [𝑈 ]M𝑢𝑑† [𝑈 ]

}
−log det

{
𝑀𝑠 [𝑈 ]

}
O [𝑈] (1.63)

Similar to the Hubbard model, one can apply variants of HMC algorithms to generate a Markov
chain of these configurations and measure observables by means of (1.4). It should be noted that
the computational demand is considerably higher than that of the Hubbard model! Over the past
decades, significant efforts have been made to optimize the algorithms and identify improved
discretization. However, only with the advent of supercomputers has it been possible to achieve
calculations to great precision.

1.4 Parton Distribution Functions

In 1969, Richard Feynman proposed a model that describes the constituents of hadrons, today known
as quarks and gluons. The constituents are typically called partons. This description was formulated
as a bag of free quarks that make up the hadron of interest, for example a proton consisting out of
three quarks, two up quarks and one down quark. It became clear, that this model was too simple
to describe the scattering processes, and later developments then led to QCD. Within QCD, the
quantum numbers of hadrons are not only determined by the valence quarks, for the proton the
two up quarks and one down quark. Furthermore, these valence quarks are not free but rather
bound by the strong interaction carried through gluons. QCD allows for the spontaneous creation of
particle anti-particle and successive rapid annihilation at high enough energies, which lead to the
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understanding that the hadron consists of the valence quarks and sea quarks, all held together by
strong force transmitted via gluons. All these can alter the quantum numbers. In short, it is a very
vibrant state with an extremely rich internal structure. Note that today all these constituents, valence
quarks, sea quarks as well as the gluons, are still called partons following Feynmans convention.
However, the calculation of the inner structure is still an outstanding challenge for modern particle
physics, and many theoretical and phenomenological studies as well as experiments are being
conducted to gain a glimpse into these systems. All of this work is a great example of how theoretical
developments go hand in hand with experimental work, as related measurable quantities can be
compared, and thus provide a valuable testing ground for the methods and ideas of particle physics.

The partonic structure of a nucleon is best probed in processes such as Deep Inelastic Scattering
(DIS) of leptons – electrons, muons, tauons and their corresponding neutrinos – off hadrons [36,
37]. Here the lepton is assumed to transfer a four-momentum 𝑄 to the nucleon in the collision. This
generates a resolution of the order of ℏ/|𝑄 | where higher momentum transfers allow for a higher
resolution of the inner structure. Of course, all observables related to the parton structure must
depend on the momentum transfer, which is typically expressed through the squared momentum
transfer

𝑄2 = (𝑃 𝑓 − 𝑃𝑖)2, (1.64)

which makes use of an initial hadron momentum 𝑃𝑖, before the collision, and a final hadron
momentum 𝑃 𝑓 , after the collision, to equivalently express the momentum transfer. However, when
studying relativistic quantum systems one must be careful when talking about resolution of the
inner structure. Heisenberg’s indeterminacy principle prohibits simultaneous knowledge of position
and conjugate momentum. A natural resolution barrier is provided by the Compton wavelength; for
a hadron 𝐻 with mass 𝑚𝐻 , a system cannot be probed with a higher precision than O(1/𝑚𝐻) [38].
The fundamental limitation is that for probes with higher energy, particles with mass of that order
are potentially produced. In this situation, the resulting measured inner structure is influenced by the
interaction with these particles concealing the true inner structure. A way to get an understanding
of the dynamics in quantum mechanical system was proposed by Wigner in 1932 [39] through
functions today known as Wigner distributions [38]. Investigation on the parton structure of hadrons
draw on these ideas in an attempt to find a generalized description.

One particular structure discussed in this thesis, see chapter 5, is the momentum distribution of
certain partons of the nucleon – the so-called parton distribution function (PDF). In particular, we
focus on the quark content and neglect the gluon PDFs. Considering a fast moving nucleon, where
all partons move roughly along the direction of the nucleon. Consequently, the momentum fraction,
along the direction of movement, carried by one parton describes a relevant variable in this limit.
This is the longitudinal momentum fraction, usually denoted by 𝑥 ∈ [0, 1]. For a given process
with momentum transfer squared 𝑄2 the PDF is a function 𝑓 𝑞 (𝑥, 𝑄2) ≡ 𝑓 (𝑥), for a given parton 𝑞.
We differentiate between three PDFs; the unpolarized 𝑞(𝑥) PDF, the polarized PDF Δ𝑞(𝑥), and the
transversity PDF 𝛿𝑞(𝑥). Notice that the dependence on 𝑄2 is typically suppressed in this notation.

Parton distribution functions can be defined by considering bilocal quark operators [36]

𝑂𝑋𝑞 (𝑥) =
1

2𝜋

∫
d𝜆 𝑒i𝜆𝑥𝑞(0)Γ𝑋U𝑞(𝜆𝑛). (1.65)

where 𝑞 = 𝑢, 𝑑, · · · denotes the quark parton of interest, and 𝑛 = (𝑛𝜇) is a light cone vector, chosen
such that

𝑛 ·
𝑃 𝑓 + 𝑃𝑖

2
= 1. (1.66)

with a typical choice of 𝑛 = (1, 0, 0,−1) [38]. The gauge linkU connects to the quark and extends
along the light cone to make the operator gauge invariant. From this we can define the PDF by
taking the matrix element for a process 𝐻 (𝑃𝑖) → 𝐻 (𝑃 𝑓 ) [38]

𝑓 𝑞 (𝑥) = 1
2𝑝+

〈
𝐻 (𝑃𝑖)

��𝑂𝑋𝑞 (𝑥)��𝐻 (𝑃 𝑓 )〉 . (1.67)
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In particular we can access the polarized PDF, the unpolarized PDF and the transversity PDF by
inserting the vector (V), axial (A), or tensor (T) Dirac structure, respectively,(

Γ𝑉
)𝜇

= 𝛾𝜇 &
(
Γ𝐴

)𝜇
= 𝛾𝜇𝛾5 &

(
Γ𝑇

)𝜇𝜈
= 𝛾𝜇𝜈 . (1.68)

Unfortunately, lattice QCD is calculated in Euclidean space, which makes the direct access to
operators of this form difficult. There have been several developments in recent years to extract
parton distribution functions from the lattice. In particular, the quasi-PDF methods [40, 41], allows
to calculated the x dependence more directly.

However, in this thesis I discuss the more traditional approach to calculate moments of PDF [42,
36, 37, 43, 44, 36, 45, 46, 47, 48, 49]. Instead of calculating the entire x-dependence only moments
of the PDF are calculated. Since these can be related to matrix elements of local leading twist
operators, significantly less momentum is required compared to the quasi-PDF methods. Using the
operator product expansion it is possible to relate the nth Mellin moment,〈

𝑥𝑞
〉𝑛

=

∫
d𝑥 𝑥𝑛−1 𝑓 𝑞 (𝑥) (1.69)

to local leading twist operators with n-derivative operators

𝑂𝑋𝛼,𝜇1, · · · ,𝜇𝑛 = 𝑞Γ
𝑋
{𝛼
↔
𝐷𝜇1 · · ·

↔
𝐷𝜇𝑛 }𝑞. (1.70)

where we make use of the left and right acting Dirac operator
↔
𝐷 = 1/2(

→
𝐷 −

←
𝐷), discretized on the

lattice. The relation for the nth moment and the matrix element is linear, for the nucleon we have

⟨𝑁 (𝑝) |O𝑋{𝛼 𝜇1, · · · ,𝜇𝑛 } |𝑁 (𝑝)⟩ = ⟨𝑥⟩ 𝑞𝑁 (𝑝)Γ
𝑋
{𝛼 i 𝑝𝜇1

· · · i 𝑝
𝜇𝑛 }𝑞𝑁 (𝑝) . (1.71)

Notice that the indices 𝛼, 𝜇1, · · · , 𝜇𝑛 are symmetrized and traces are removed, indicated by {· · · }.
The kinematic factor can be determined analytically. However, it is highly non trivial to calculate
the left-hand-side and we use lattice QCD to determine it.

To calculate matrix elements of local leading twist operators (1.70), one first generates an
ensemble of gauge configuration with the favourite lattice discretization. Then two-point correlators,

C2pt (𝜏) =
∫

d3𝑦 𝑒−i ®𝑝 ®𝑦 Tr
{
Γpol

〈
𝜒 (®𝑦, 𝜏) 𝜒

(
®0, 0

)〉}
, (1.72)

and three-point correlators,

CO
𝑋

3pt (𝑇, 𝜏) =

∫
d3𝑦 d3𝑧

[
𝑒−i ®𝑝 ′ ®𝑦𝑒i( ®𝑝 ′− ®𝑝) ®𝑧 Tr

{
Γpol

〈
𝜒 (®𝑦, 𝑇) O𝑋 (®𝑦, 𝜏) 𝜒

(
®0, 0

)〉}]
, (1.73)

have to be calculated on each gauge configuration. A graphical representation of this can be found
in chapter 5 in figure B.1. Notice, these equation use certain interpolating operators 𝜒 that need
to be constructed for the hadron at hand. Further, definitions of the components used here can be
found in chapter 5 section B.2. Now the matrix element can be extracted by taking the ratio of these
correlators in the limit of large times and source sink separations

⟨𝐻 (𝑃′) |𝑂 |𝐻 (𝑃)⟩ = lim
𝑇−𝜏,𝑇→∞

C𝑂𝑋3pt (𝑇, 𝜏)
C2pt (𝑇)

. (1.74)

Since infinite lattices, in particular time extents, are practically impossible, a detailed analysis
of the excited state contamination must be performed. This procedure has been shown to work
well for the first few methods, which is discussed in more detail in chapter 5. Unfortunately, high
moments become increasingly difficult to calculate because they become more noisy, requiring more
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configurations, and have more excited state contamination, requiring larger source sink separations
making the estimates even more noisy. In addition, the renormalization of more derivative operators
becomes increasingly difficult as mixing occurs.

All this is done to extract the momentum distribution of the partons inside a hadron. However,
spatial distributions, charges and currents, can be obtained in a similar manner. They relate to a
0-derivative matrix elements, see for example [50]. All this, and more, can be summarized in a
more extensive picture that, currently, provides the most complete description of the inner structure
of Hadrons. The so-called generalized parton distribution functions (GPDs) allow to access the
dynamical correlation of spatial and momentum distributions. Consider the generalized parton
distribution function, typically denoted by 𝐻, �̃�, 𝐸 , and �̃� [51, 38, 36], as well as the transverse
GPDs 𝐻𝑇 , �̃�𝑇 [52, 53]. These depend, besides the renormalization scale, on the partons longitudinal
momentum fraction 𝑥, the parton longitudinal momentum transfer 𝜉, and the momentum transfer to
the target 𝑡. It should be emphasized that the dependence on 𝑥 and 𝜉 only encode the longitudinal
structure while the dependence on 𝑡 allows to access information about the transverse momentum.
To argue that generalized parton distributions encode information about spatial and momentum
distributions, three important relations can be considered [53, 51].

First, integrating out the momentum fraction, results in the form factor limit∫
d𝑥 𝐻 (𝑥, 𝜉, 𝑡) = 𝐹 (𝑡). (1.75)

The Dirac form factor is governed by H, the Pauli form factor by E, the axial vector form factor by
�̃�, and the pseudoscalar form factor by �̃� .

Second taking the forward limit, 𝜉, 𝑡 → 0, result in the parton distributions

lim
𝜉 ,𝑡→0

𝐻 (𝑥, 𝜉, 𝑡) = 𝑞(𝑥) (1.76)

lim
𝜉 ,𝑡→0

�̃� (𝑥, 𝜉, 𝑡) = Δ𝑞(𝑥) (1.77)

lim
𝜉 ,𝑡→0

𝐻𝑇 (𝑥, 𝜉, 𝑡) = 𝛿𝑞(𝑥) (1.78)

which are detailed above.
Last, there is Ji’s sum rule making a connection to the total angular momentum 𝐽𝑞,

lim
𝑡→0

1
2

∫
d𝑥 𝑥(𝐻 + 𝐸) (𝑥, 𝜉, 𝑡) = 𝐽𝑞 . (1.79)

The first two rules demonstrate clearly, how the notion of a generalized parton distribution
function provides a framework that combines the information about the spatial and momentum
distributions similar to the Wigner distributions. In fact, generalizing the Wigner function to a
quantum field theory, allows to use it as a generating functional for GPDs [38].
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Chapter 2

Mitigating the Hubbard Sign Problem
with Complex-Valued Neural Networks

This chapter is based on [1]:

Marcel Rodekamp, Evan Berkowitz, Christoph Gäntgen, Stefan Krieg, Thomas Luu, and Johann
Ostmeyer. “Mitigating the Hubbard sign problem with complex-valued neural networks.” In:
Phys. Rev. B 106 (12 Sept. 2022), p. 125139. doi: 10.1103/PhysRevB.106.125139. arXiv:
2203.00390
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In order for the Boltzmann distribution, compare equation (1.3), to be interpret as a proper probability
distribution the action must be real-valued. This is true for some relevant quantum field theories.
Consequently, the widely applied Markov chain methods can be used to generate random variables
distributed according to the Boltzmann distribution, which, subsequently are used to compute the
observables, compare equation (1.1) using the Monte Carlo approach efficiently. Unfortunately,
for many interesting physical systems the discretization yields a generally complex-valued action.
Examples for such cases are lattice QCD at finite baryon-chemical potential or with a Θ-term.
Furthermore, systems of strongly correlated electrons described by a Hubbard model away from
half filling typically form a complex action. Additionally, when the Hubbard model is used to
describe systems with frustrated bonds a sign problem is found even at zero chemical potential.
Finally, any simulation with a real valued action that is not Wick rotated into euclidean time suffers
from a sign problem as the Boltzmann weight is ∼ 𝑒− i S. In all these cases, and many more, the
Boltzmann distribution can only be understood as a pseudo-distribution and Monte Carlo become
inapplicable. This phenomenon is known as the oscillating complex phase or sign problem.

Phase-reweighting allows observables to be re-expressed in a way that enables Monte Carlo
methods to be applied without change, compare the result in equation 1.8. The basic idea is to put
the complex phase, coming from the imaginary part of the action, into the observable and sampling
the Markov chain according to the real part of the action. The equation (1.8) is exact and does
not depend on the algorithm that generates the configurations. However, it comes at the cost of a
widely oscillating integrand, 𝑒− i Im{S} which tends to be infeasible to compute. It is anticipated that
the sign problem is NP-complete [20], thus my objective is to ameliorate its effects to extend the
computable parameter space. Many formal and practical developments have been investigated for
various theories. In particular, path deformations have acquired great interest [21, 54, 55, 56, 57,
58, 59]. The use of neural networks to identify path deformations has been explored for various
theories but typically suffers from bad volume scaling [60, 61].

This chapter examines the potential of complex-valued neural networks to mitigate the sign
problem of the Hubbard model. The Hubbard Hamiltonian,

H [𝜅,𝑈, 𝜇] = −𝜅
∑︁
⟨𝑥,𝑦⟩∈𝑋

(
𝑝†𝑥 𝑝𝑦 − ℎ†𝑥ℎ𝑦

)
+ 𝑈

2

∑︁
𝑥∈𝑋

𝑞2
𝑥 + 𝜇

∑︁
𝑥∈𝑋

𝑞𝑥 , (2.1)

is treated with a trotterization to obtain an action on continues degrees of freedom, compare
equation 1.37. Notice, that the sign convention compared to equation 1.11 is different assuming that
the number difference between particles and holes, 𝑞𝑥 = 𝑝†𝑥 𝑝𝑥 − ℎ†𝑥ℎ𝑥 , corresponds to electrons
having a positive charge. This convention is the typically chosen for the Hubbard model at zero
chemical potential as the sign does not affect the interaction. The convention can be translated by
sending 𝜇 → −𝜇. Once the action is set up, the simulation using HMC obeys a sign problem at
finite chemical potential 𝜇. Complex-valued neural networks, build upon affine coupling layers that
change half the input based on a coupling 𝑐 that relates the input partitions Φ𝐴,Φ𝐵,

(Φ𝐴,Φ𝐵) ↦→
(
𝑐(Φ𝐴,Φ𝐵)

Φ𝐵

)
, (2.2)

are used to identify the transformation towards Lefschetz thimbles. Affine coupling layers
traditionally allow for the computation of the Jacobian determinant in O(𝑉) time, which is a
significant improvement over a naive determinant scaling as O

(
𝑉3) . For complex-valued networks

a subtlty appears that is discussed in this paper with further information at the end of this chapter in
section 2.6. We demonstrate the efficacy of this method by successfully applying it to systems of
different size. Each is intractable with a naive HMC implementation due to its sever sign problem.
With simulations on the tangent plane, a classical solution to the holomorphic flow equation that is
parallel to the – original – real plane, the smaller systems can be resolved. However, as the sign
problem becomes worse with larger number of ions this is not enough anymore. Consequently,
the complex valued neural network discussed in this chapter is used to transform to a less simple
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manifold on which the sign problem becomes further reduced. The boundary is further pushed to a
8- and 18-site system, actually showing some graphene like system, on which the tangent plane fails
to resolve single particle correlators. A study of physical properties is beyond this chapter as only
a single ensemble is considered. We discuss more physics in chapter 4 on the molecule C20H12
perylene which is build out of 20 ions.

The idea to use affine coupling layers was proposed by Wynen et.al. [61] and then executed by
me. Many helpful discussions with the co-authors guiding the process.

2.1 Introduction

The computational sign problem encumbers successful importance sampling from complex-valued
distributions with Markov Chain Monte Carlo algorithms such as Hybrid Monte Carlo (HMC).
Sampling from the configuration space of a wide variety of interesting physical systems suffers
such a difficulty, ranging from lattice QCD at finite baryon chemical potential and doped condensed
matter systems in equilibrium to the real-time evolution of quantum systems.

By deforming the real manifold of integration for a path integral of interest into complex
variables, one may reduce the sign problem substantially [62, 23, 63, 64]. In the last few years, new
formal developments have inspired investigation into leveraging Lefschetz thimbles [21, 54, 55, 56,
57, 58, 59]—high-dimensional analogues of contours of steepest descent which can be located by
holomorphic flow. In [54], for example, fluctuations about the saddle point of each thimble were
sampled to simulate the 0+1 dimensional Thirring model, something much akin to the method of
steepest descent. In practice the determination of the precise location of each thimble’s saddle
point, or critical point, as well as the relevant sampling ‘direction’ about these points, is numerically
costly and prohibitive. An alternative method is to train neural networks to learn the map from
some starting manifold to any beneficial manifold, including one that approximates the thimbles
that contribute to the integral [60, 65, 61].

In our previous work [61] we were limited by the computational cost of incorporating the
Jacobian determinant of this map into our importance sampling. In this paper we leverage
complex-valued neural networks built of affine coupling layers to reduce the scaling of the Jacobian
determinant cost. We focus on the Hubbard model on a honeycomb lattice away from half-filling
and compare methods by computing single-particle correlation functions.

This paper is organized in the following way. In Section A.2, a brief recap of the Hubbard
model and basic notation is given. After that, some prior methods to alleviate or remove the sign
problem and usage within HMC are discussed. In Section 2.3, we describe the new neural network
architecture. In Section 2.4, we show a numerical test of the network on three systems where
we can exactly diagonalize the Hamiltonian, and one larger system beyond our ability to exactly
diagonalize.

2.2 Formalism

The Hubbard model [66, 30, 31] describes a fixed spatial lattice 𝑋 on which particles can move and
interact. In the particle-hole basis it is described by Hamiltonian

H [𝐾,𝑉, 𝜇] = −
∑︁
𝑥,𝑦∈𝑋

(
𝑝†𝑥𝐾

𝑥𝑦 𝑝𝑦 − ℎ†𝑥𝐾 𝑥𝑦ℎ𝑦
)
+ 1

2

∑︁
𝑥,𝑦∈𝑋

𝜌𝑥𝑉
𝑥𝑦𝜌𝑦 + 𝜇

∑︁
𝑥∈𝑋

𝜌𝑥 , (2.3)

where the amplitudes in 𝐾 encode the hopping of fermionic particles 𝑝 and holes ℎ, the potential 𝑉
describes the interactions between charges

𝜌𝑥 = 𝑝
†
𝑥 𝑝𝑥 − ℎ†𝑥ℎ𝑥 (2.4)
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(a) 2 Sites (b) 4 Sites (c) 8 Sites

(d) 18 Sites (boundary suppressed)

Figure 2.1: Graphical representation of the arrangement of ions considered in the numerical
investigation. Each node corresponds to an ion while each edge indicates an allowed particle/hole
hopping. The dashed lines represent the periodic boundary.

and the chemical potential 𝜇 incentivizes charge. By adjusting 𝐾 and 𝑉 this model can describe a
wide variety of physical systems. We restrict our attention to the case where 𝐾 encodes a honeycomb
structure with nearest-neighbor hopping and the interaction 𝑉 is local,

𝐾 = 𝜅𝛿⟨𝑥𝑦⟩ & 𝑉 = 𝑈𝛿𝑥𝑦; (2.5)

the bipartiteness of the honeycomb permits a signed sublattice transformation that flips the sign of
the hopping of holes. As we are focusing on algorithmic issues we focus on only the four systems
displayed in Figure 2.1. These—the 2, 4, 8, and 18 site models—are examples of the honeycomb
lattice with periodic boundary conditions.

Our aim is to compute observables O according to the thermal trace

⟨O⟩ = 1
Z tr

{[
O𝑒−𝛽𝐻

]}
. (2.6)

where the partition functionZis the trace without the observable and 𝛽 is the inverse temperature,
the euclidean time extent. Trotterizing into 𝑁𝑡 timeslices, inserting Grassmannian resolutions of
the identity, and linearizing the interaction via the Hubbard-Stratonovich transformation [29] leads
to the action

𝑆 [Φ | 𝐾,𝑉, 𝜇] = 1
2

∑︁
𝑡

∑︁
𝑥,𝑦∈𝑋

Φ𝑡 𝑥 (𝛿𝑉−1)𝑥𝑦Φ𝑡 𝑦 − log det{𝑀 [Φ | 𝐾, 𝜇] · 𝑀 [−Φ | − 𝐾,−𝜇]},

(2.7)

where Φ ∈ R |Λ | is an auxiliary field on the spacetime lattice Λ = [0, 𝑁𝑡 − 1] ⊗ 𝑋 and 𝛿 = 𝛽/𝑁𝑡 .
We use the exponential discretization [19] for the fermion matrices

𝑀 [Φ | 𝐾, 𝜇]𝑥′𝑡 ′;𝑥𝑡 = 𝛿𝑥′𝑥𝛿𝑡 ′𝑡 −
(
𝑒𝛿 (𝐾+𝜇)

)
𝑥′𝑥
𝑒+𝑖Φ𝑥𝑡B𝑡 ′𝛿𝑡 ′ (𝑡+1) (2.8)

where B encodes the antiperiodic boundary conditions in time. On a bipartite lattice we may
replace the −𝐾 in the holes’ fermion matrix with +𝐾; then when 𝜇 = 0 the determinant may be
made manifestly positive-semidefinite. When 𝜇 is finite 𝑆 is complex; a great deal of recent effort
has been made in the computational physics community to understand this case [67, 68, 69, 70].

The transformation of the thermal average (2.6) leads to the path integral

⟨O⟩ = 1
Z

∫
D [Φ] 𝑒−𝛽𝑆 [Φ]O [Φ] ≡

∫
D [Φ] 𝑝𝑆 [Φ] O [Φ] (2.9)
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where the partition functionZ is the integral without the observable O. When the action is real
importance-sampling methods draw Ncfgconfigurations according to the Boltzmann distribution

𝑝𝑆 [Φ] =
1
Z 𝑒

−𝑆 [Φ] (2.10)

and estimate observables (A.5) by an unweighted average. Any practical calculation samples only
finitely many configurations Ncfg and the resulting statistical uncertainties scale like N−1/2

cfg as long
as the configurations are independent.

At finite 𝜇 a complex-valued action yields an oscillating integrand and 𝑝𝑆 (2.10) can no longer be
interpreted as a standard probability density, rendering a straightforward application of importance
sampling impossible.

To recover an importance-sampling algorithm we can separate the real and imaginary parts of
the action 𝑆 = Re{𝑆} + 𝑖 Im{𝑆} and rewrite the partition function

Z =

∫
D [Φ] 𝑒−𝑆 =

∫
D [Φ] 𝑒− Re{𝑆}𝑒−𝑖 Im{𝑆} ∝

〈
𝑒−𝑖 Im{𝑆}〉

Re{𝑆} ≡ Σ (2.11)

where the expectation value is with respect to the real part of the action and we call Σ the statistical
power. So, by sampling according to 𝑝Re{𝑆} we can estimate

⟨O⟩ =

〈
𝑒−𝑖 Im{𝑆}O

〉
Re{𝑆}〈

𝑒−𝑖 Im{𝑆}
〉

Re{𝑆}
=

1
Σ

〈
𝑒−𝑖 Im{𝑆}O

〉
Re{𝑆} . (2.12)

When the statistical power Σ (3.5) cannot be reliably distinguished from zero the sign problem is
too strong and the whole procedure fails [20, 61, 54, 71]. [20] showed that the effective number of
configurations

Neff
cfg = |Σ |2 · Ncfg (2.13)

controls the scaling of statistical errors ∼
(
Neff

cfg

)−1/2
.

It is widely expected that the statistical power shrinks exponentially with spacetime volume
𝛽 |𝑋 |. Because the power is the ratio of the full and phase-quenched partition functions it should be
exponential in a difference of free energies, which is extensive in the spacetime volume [72]. For
small nonbipartite examples we have previously confirmed the exponential dependence on 𝛽 [61].

A promising alternative to simple reweighting is to complexify the domain of integration
and transform 𝜙 ∈ MR = R |Λ | to a manifold Φ ∈ M ⊂ C |Λ | . As long as Mis in the same
homology class, the analogue of the Cauchy integral theorem ensures that the partition function is
unchanged [23],

Z =

∫
M
D [Φ] 𝑒−𝑆 [Φ] . (2.14)

Parametrizing the manifoldM by the real fields induces a Jacobian determinant, yielding [54]

Z =

∫
MR

D [𝜙] 𝑒−𝑆 [Φ(𝜙) ]+log det{𝐽 [Φ(𝜙) ] } (2.15)

and observables are computed on the manifold O [Φ (𝜙)].
A judicious choice of the manifoldM can diminish or completely remove the sign problem [73,

23]. Even when sampling according to 𝑝Re 𝑆eff with an imperfect manifold with a complex effective
action

𝑆eff [𝜙] = 𝑆 [Φ(𝜙)] − log det 𝐽 [Φ(𝜙)] 𝐽𝑖 𝑗 =
𝜕Φ𝑖

𝜕𝜙 𝑗
(2.16)
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if the statistical power Σ (3.5) is sufficiently improved we can reweight (A.6) with the imaginary
part Im 𝑆eff.

There are many strategies for picking target manifolds [74]. One choice is to try to approximate
the Lefschetz thimbles – high-dimensional manifolds analogous to contours of steepest descent,
which have constant imaginary action and therefore have a much-reduced sign problem [73]. Each
thimble contains a critical point Φcrit that satisfies

𝜕𝑆 [Φ]
𝜕Φ

����
Φ=Φcrit

= 0 (2.17)

and is therefore a fixed point of the holomorphic flow

𝑑Φ(𝜏)
𝑑𝜏

=

(
𝜕𝑆 [Φ(𝜏)]
𝜕Φ(𝜏)

)∗
(2.18)

as a function of the fictitious flow time 𝜏 and initial condition Φ(0) = 𝜙. We can trace trajectories
under the flow using the integrator

ℑ±𝜏 [𝜙] ≡
±𝜏∫

0

(
𝜕𝑆

[
Φ(𝜏 𝑓 )

]
𝜕Φ(𝜏 𝑓 )

)∗
d𝜏 𝑓 . (2.19)

A thimble is the set of complexified configurations that flow to a critical point under downward flow
ℑ−∞.

There may be many thimbles in C |Λ | and only some might contribute. The upward flow ℑ+∞
discovers these thimbles automatically. After enough flow time 𝜏 the integrator ℑ+𝜏 drives any Φ(0)
to either a place on a thimble or to neverland – any place where thimbles of different imaginary
action meet and therefore must have zero weight. When Φ starts on a valid integration manifold
its image under ℑ+∞ is on a thimble that contributes to the integral or is in neverland. For an
approachable discussion and proof, see the recent review [23].

Therefore, we can try to evaluate the path integral (2.15) on the manifold given byΦ (𝜙) = ℑ+∞ [𝜙]
for each 𝜙 on any valid starting manifoldM0, such asMR. Though this seems to make sign problem
free simulations possible, two issues remain. While integrating the flow (2.19) is cheap, performing
molecular dynamics integration on the thimbles at first glance involves the costly computation of the
Hessian 𝜕Φ𝑖𝜕Φ 𝑗𝑆 [Φ] due to the appearance of the Jacobian determinant of the flow in the effective
action (A.8), though some ideas for quickly estimating the Jacobian have been proposed [75] and
recent work [76] shows how to accelerate this for sparse, local (bosonic) actions. The Jacobian
determinant has to be evaluated at any accept-reject step with computational cost scaling like |Λ|3.

Second, because thimbles only touch at places of zero weight, algorithms like HMC [77] which
use a smooth update of the fields Φ would be encumbered by an ergodicity problem. The severity of
this issue is ameliorated in two ways. As any practical integrator ℑ+𝜏 necessarily approximates the
flow, the resulting integration manifold is only approximately the union of contributing thimbles.
Additionally, we do not need to flow for very much time. Both of these mean that the important
configurations are smoothly connected, though the imaginary part of the action is not perfectly
piecewise constant. In practice, picking a 𝜏 is a tradeoff between reducing the computational cost of
the flow and an improvement of the statistical power.

The cost of the flow and the associated Jacobian determinant is such that it is beneficial to train
a neural network to learn the map ℑ+𝜏 :M0 → M̃. In the next section we explain our network’s
architecture.

Of course, understanding neural networks as general function approximators yields an interpreta-
tion of any (numerical) integrator as a network, though it is parameter-free and needs no training—its
layers, given by some discretization of the flow equations (A.9), are exactly known. Just as we can
produce training configurations closer to the thimbles with a more precise integrator, by adding
additional layers we may train the network to reproduce the integrated flow more accurately. So,
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one expects a trade-off between the nearness to the thimbles (thinking of the number of layers as a
proxy) and the effort required to train. The algorithm we describe is exact, even in the case where
the network does not offer an acceleration, since the network produces a manifold with the correct
homology class regardless of its fidelity to the thimbles.

Because we can integrate on any manifold in the same homology class as R |Λ | , it may be
beneficial to find simple manifolds that can improve the statistical power without the computational
cost of flowing [78, 79]. One such manifold is the tangent (hyper-)plane Φ ∈ M𝑇 [54, 61, 23], a
hyperplane parallel to the real manifold offset by a constant imaginary piece so that it intersects the
critical-point image of the zero configuration 𝑖Φ0

crit = ℑ+∞(0)

Φ (𝜙) = 𝜙 + 𝑖Φ0
crit (2.20)

for all 𝜙 ∈ MR. For many smaller systems this transformation already reduces the sign problem
enough that reweighting can be applied. However, in our larger examples the tangent plane gives
no appreciable statistical power. Nevertheless, we can reduce the cost and potentially increase the
potency of flowing if we start from the tangent plane [61].

One obvious approach to constructing an HMC-like algorithm is to attempt molecular dynamics
on the target manifold M̃ given by Φ̃; in our case, an approximation of the thimbles. However,
remaining on the manifold is not so simple [80, 81, 82, 76].

In contrast, performing HMC on the tangent plane is simple – when integrating molecular
dynamics trajectories simply neglect the imaginary part of the force. Because the real plane suffers
from a severe sign problem in the examples we study, we use this tanget-plane HMC as a benchmark.
In the remainder of this paper we refer to it simply as “HMC” unless clarification is needed.

For further improvement we do molecular dynamics on the tangent planeM𝑇 and perform the
Metropolis-Hastings accept/reject step on the target manifold M̃ according to the effective action
(A.8). We track the configuration on both the integration manifoldM0 and its image on the target
manifold M̃ to avoid paying the computational cost of applying or inverting the transformation Φ̃

more than needed. Assuming the numerical implementation of the map Φ̃ is invertible, proof that
this algorithm has detailed balance is provided in [61]. One can use a reversible integrator or an
invertible neural network to satisfy this requirement.

2.3 Machine-Learning Method

To accelerate the transformation to the target manifold M̃, reducing computational complexity, it is
possible to define a neural network trained to approximate the integrator (2.19) NN ≈ ℑ+𝜏 .

One approach is to learn the imaginary part of any configuration on the target manifold M̃
given its real part[60, 61]

SHIFT :M0 → M̃, Φ ↦→ Φ + 𝑖𝑁𝑁 (Re{Φ}) . (2.21)

This ansatz has two advantages. First, the ergodicity issue, induced by potential trapping on
individual thimbles, is removed [60]. Second, the network can use the well-established methods of
real-valued neural networks. Computational costs due to flowing are reduced as the application of
the neural network is much cheaper then any numerical integration. However, a major disadvantage
is the computational effort and severe volume scaling of the Jacobian determinant [61].

In this work we use complex-valued neural networks – networks with complex parameters – to
instead learn the map from the integration manifoldM0 to the target manifold �̃� ,

Φ̃ = NN(𝜙) ≈ ℑ+𝜏 (𝜙). (2.22)

This approach enjoys a significant advantage over the SHIFT network (A.10): given the right
network architecture the Jacobian may be evaluated very quickly. Below we will explain our use of

23



affine coupling layers to reduce the scaling of the Jacobian determinant from a general cubic scaling
down to a linear scaling in the volume |Λ|.

For a recent overview of complex-valued networks see [83]. Typical automatic differentiation
algorithms can be applied to complex-valued neural networks in a similar manner as to real-valued
ones [84, 85, 86] by switching the differentiation rule to Wirtinger derivatives [84]

𝜕 𝑓 (𝑧)
𝜕𝑧

=
1
2

(
𝜕 𝑓 (𝑧)
𝜕 Re 𝑧

− 𝑖 𝜕 𝑓 (𝑧)
𝜕 Im 𝑧

)
𝜕 𝑓 (𝑧)
𝜕𝑧∗

=
1
2

(
𝜕 𝑓 (𝑧)
𝜕 Re 𝑧

+ 𝑖 𝜕 𝑓 (𝑧)
𝜕 Im 𝑧

)
.

(2.23)

The Wirtinger derivatives have the advantage that they coincide with complex derivatives for
holomorphic functions while also extending to non-holomorphic ones. This generalization is
required for two reasons. First, loss functions typically are not holomorphic and are not differentiable
in the complex sense. Second, Liouville’s theorem, stating that bounded entire functions are constant,
reduces the usability of any complex-valued neural network if only holomorphic components can be
used. As automatic differentiation is possible through backpropagation using Wirtinger derivatives,
these restrictions can be overcome and a neural network NN : C𝑚 → C𝑛 with complex-valued
weights can be defined [83]. We want to emphasize that a non holomorphic network can approximate
the thimbles even though their definition is manifestly holomorphic. This can be understood by
utilizing the universal approximation theorem [87], and realizing that the change of variable requires
an embedding which is at least twice-differentiable in the Wirtinger sense. It is expected that
such networks have an improved expressivity compared to real valued networks of twice the size
– mimicking the real and imaginary parts – as complex networks do not have to learn complex
arithmetic [83].

Special care has to be taken when evaluating the Jacobian induced by the parametrization of
�̃�.1 The Jacobian in the effective action (A.8) is defined by the derivative of the transformation
according to its real parameters – a derivative in the real sense. When applying a non-holomorphic
neural network to parametrize the manifold, the Wirtinger derivatives force us to reexpress the
derivative in the real sense by combining the two equations of (2.23) and the transformation on the
tangent plane (2.20)

𝐽𝑖 𝑗 ≡
𝜕NN(𝜙 + 𝑖Φ0

𝑐)𝑖
𝜕𝜙 𝑗

=
𝜕NN(Φ)𝑖
𝜕Φ 𝑗

+ 𝜕NN(Φ)𝑖
𝜕Φ∗

𝑗

. (2.24)

To identify an architecture with an efficiently-computable Jacobian determinant, split the
network into 𝐿 constituent layers:

Φ0(𝜙) = 𝜙 + 𝑖Φ0
𝑐

Φℓ>0(𝜙) = NNℓ (Φℓ−1(𝜙))
= (NNℓ ◦ NNℓ−1 ◦ · · · ◦ NN1) (𝜙)

Φ̃(𝜙) = Φ𝐿 (𝜙) = NN 𝐿 (𝜙) ≡ NN(𝜙). (2.25)

The Jacobian determinant of the neural network2 is then given as the product of the Jacobian
determinants of each layer

det{𝐽} =
𝐿∏
ℓ=1

det
{
𝐽NNℓ

}
. (2.26)

Consequently, we focus on layers with computationally simple Jacobian determinants. Coupling
layers

NNℓ (Φ) =
{
𝑐ℓ [Φ𝐴, Φ𝐵] 𝐴ℓ components
Φ𝐵 𝐵ℓ components

(2.27)

1For a more thorough discussion on this result, please refer to 2.6
2Note that this requires the input and output dimension of each layer to be equal.
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Figure 2.2: Pictorial representation of one coupling layer (A.12). First the input configuration Φ is
split into two partitions Φ𝐴 and Φ𝐵. The corresponding 𝐴 components are then changed accoring
to the prescribed coupling 𝑐𝑙 (Φ𝐴,Φ𝐵) while the 𝐵 components are untouched. We utilize an affine
transformation (A.13) for the coupling 𝑐𝑙. The resulting output vector Φ̃ is then constructed from
the transformed 𝐴 components and unchanged 𝐵 components.

fulfill this requirement [88, 89]. Here 𝐴 and 𝐵 are layer-specific partitions of the input vector Φ
of equal cardinality 1

2 |Λ|, and Φ𝐴,𝐵 are the components of the input belonging to the indicated
partition. If the coupling layer 𝑐ℓ [Φ𝐴,Φ𝐵] acts elementwise and is holomorphic in the components
Φ𝐴

𝜕𝑐ℓ [Φ𝐴,Φ𝐵]
𝜕Φ∗

𝐴

= 0 , (2.28)

the Jacobian determinant of each layer is given by

det
{
𝐽NNℓ (Φ)

}
=

|𝐴|−1∏
𝑖=0

𝜕𝑐ℓ [Φ𝐴,Φ𝐵]
𝜕 (Φ𝐴)𝑖

. (2.29)

Furthermore, using an affine coupling [88]

𝑐ℓ [Φ𝐴,Φ𝐵] = 𝑒𝑚ℓ (Φ𝐵 ) ⊙ Φ𝐴 + 𝑎ℓ (Φ𝐵) (2.30)

with arbitrary differentiable functions 𝑚ℓ , 𝑎ℓ : C|Λ|/2 → C|Λ|/2 acting on the 𝐵 indices of the input
configuration Φ, yields a computationally cheap (log) Jacobian determinant

log det{𝐽NN (𝜙)} =
𝐿∑︁
ℓ=1

|𝐴|−1∑︁
𝑖=0

𝑚ℓ (Φℓ−1(𝜙)𝐵)𝑖 . (2.31)

The expressivity of the neural network is controlled by the trainable parameters in the coupling
functions 𝑚ℓ , 𝑎ℓ . If 𝑓 denotes an affine transformation

𝑓 (Φ) = 𝜔 · Φ + 𝑏 (2.32)

and 𝑔 the nonlinear “softsign” function

𝑔(𝑧) = 𝑧

1 + |𝑧 | (2.33)

we take the coupling functions to be

𝑎ℓ , 𝑚ℓ = 𝑔 ◦ 𝑓 ◦ 𝑔 ◦ 𝑓 (2.34)

with independent complex weight matrices 𝜔 and bias vectors 𝑏. The softsign function is non-
holomorphic, requiring us to consider the Jacobian in the Wirtinger sense (2.24). Due to the
structure of the Jacobian matrix, the nonzero non-holomorphic components 𝜕Φ∗

𝐵
𝑐ℓ do not contribute

to the determinant (A.14). A graphical representation of this architecture is displayed in Figure 2.2.
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We add layers in pairs so that 𝐿 is even. Each pair shares their partitioning. In each pair the first
layer modifies the 𝐴 partition (A.12) and the next modifies the 𝐵 partition using the same ansatz
with independent weights and biases. Notice, the Jacobian determinant can be implemented so it is
evaluated during the forward pass [88] which reduces the required additional cost to only the sums
of equation (A.14). Consequently, the Jacobian determinant in the effective action (A.8) only adds
a computational complexity linear in the volume |Λ|.

The training setup was kept simple, allowing for further improvements in the future. A
standard 𝐿1 loss function and the ADAM algorithm implemented in PyTorch [90] was used to
train the network. We kept the ADAM specific hyper parameters – running average coefficients
𝛽𝑖 = (0.9, 0.999), denominator shift 𝜀 = 1 × 10−8 as well as weight decay 𝑤 = 0 – at the standard
values. The training data comprised 10 000 (16 000 for the 18 Sites) configurations drawn from
normal distributions 𝜙 ∼ N0,𝜎 , with 𝜎 uniformly sampled between

√︁
𝑈/(1+16/𝑁𝑡 ) and

√
𝑈 [61], as

input. The “labels” consist of the corresponding flowed configurations ℑ+𝜏 (𝜙), where the integration
is performed using an adaptive Runge Kutta method of 4th order. A similar setup is used for the
validation and testing data but only for 2000 configurations each. To avoid learning features of the
thimbles irrelevant to the integral [61, 58, 54, 71], only configurations that did not flow to neverland
are included in the training.

The network NN with 2 pairs of coupling layers was initialized to the identity so that before
training it reproduced the tangent plane configurations which were fed into it. We experimented
with learning ℑ+𝜏 different flow times 𝜏 ∈ {1 × 10−6, 1 × 10−5, 1 × 10−3, 1 × 10−2, 1 × 10−1}.
We computed both the statistical power and measured correlators, as in Figure 2.4. If we flow
too much most configurations flow to neverland and training becomes expensive; if we flow too
little the statistical power hardly improves. The results shown in the next section have a flow-time
𝜏 = 1 × 10−1.

Unfortunately picking a fixed flow time of this size was not feasable for the 18 sites problem.
Instead, we defined a window of flow times 𝜏 ∈ [0, 0.1] on which the flow is performed, as was
originally done in [61]. In this manner, fixed flow-time configurations which would have flowed
to neverland and thus have been rejected could still be used if their configurations remained valid
within the window of flow times. It was found in [61] that this method greatly decreased the
cost generating training data. In future work will continue to investigate more efficient ways of
generating training data, and the training process itself, including by sampling one training point
from the steps along a holomorphic flow to 𝜏 = ∞ according to the real part of the step’s action.

2.4 Results

We simulate the Hubbard model on the honeycomb lattices of 2, 4, 8 and 18 sites shown in 2.1,
using configurations obtained on the tangent plane and via our neural network NN , at inverse
temperature 𝛽 = 4, 𝑁𝑡 = 32 timeslices, on-site coupling𝑈 = 4, and chemical potential 𝜇 = 3. To
compare the machine learning enhanced HMC to other implementations such as the real-plane
(standard) HMC with molecular dynamics onMR and the tangent plane HMC onM𝑇 we consider
the statistical power Σ. A suitable algorithm will have |Σ | close to 1, whereas low values indicate
a less suitable algorithm, since considerably more statistics would be required (A.7). Figure 2.3
shows estimates of |Σ | with different numbers of configurations for the three mentioned HMC
variants. The ML HMC is shown in blue, the tangent plane HMC in orange and the real plane HMC
in red. The ML HMC outperforms the two other algorithms in every case. Moreover, in the case of
8 sites enormous statistics are required to even get a reasonable estimate of the statistical power
for the real- and tangent-plane HMCs while the power of the ML HMC stabilizes with far fewer
samples. For 18 sites it was not feasible to simulate with the real plane HMC thus it is not shown
here. We can see that the tangent plane HMC does not get any reliable value for the statistical power
while the MLHMC converges relatively fast.

We show the efficacy of our method by computing euclidean-time correlators for a single
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Figure 2.3: The statistical power |Σ | =
��〈𝑒−i Im{𝑆}〉�� is plotted against the number of configurations.

Three different algorithms are compared, the real plane (standard) HMC (orange), the tangent plane
HMC (red) and the ML HMC (blue). For 18 sites the real plane was totally noisy, and it is left out
here. It can be seen that the ML HMC outperforms both real and tangent plane HMCs.
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particle or single hole created at time 0 and site 𝑦 and destroyed at time 𝑡 and site 𝑥.

𝐶
𝑝
𝑥𝑦 (𝑡) =

〈
𝑝†𝑥 (𝑡)𝑝𝑦 (0)

〉
=

〈
𝑀 [+Φ| + 𝜇]−1

𝑥𝑡;𝑦0

〉
(2.35)

𝐶ℎ𝑥𝑦 (𝑡) =
〈
ℎ†𝑥 (𝑡)ℎ𝑦 (0)

〉
=

〈
𝑀 [−Φ| − 𝜇]−1

𝑥𝑡;𝑦0

〉
(2.36)

To improve our signal we average on time slices in 𝑡 ∈ [𝛿, 𝛽 − 𝛿],

𝐶𝑥𝑦 (𝑡) =
1
2

(
𝐶
𝑝
𝑥𝑦 (𝑡) + 𝐶ℎ∗𝑥𝑦 (𝛽 − 𝑡)

)
; (2.37)

addends equal by symmetry even when 𝜇 ≠ 0. We then project both spatial indices to the same
momentum 𝑘 to construct 𝐶𝑘 (𝑡) for each momentum allowed by the lattice, and average correlators
whose momenta are equal by rotational symmetry.

The match of our correlators in 2.4 with the exact results demonstrate that our algorithm
is sampling the correct distribution. Each row of the figure corresponds to one of the exactly-
diagonalizable system sizes and each column restricts the number of configurations Ncfg used to
estimate the correlators. The red correlators are determined using a tangent plane HMC, the blue
ones using ML HMC. Finally, the black dashed lines correspond to the correlators obtained by an
exact diagonalization procedure. For the smaller examples the statistical errors of ML-HMC are
much smaller, especially with fewer samples, as is expected from their respective statistical powers
shown in 2.3. The worst sign problem can be found in the 8 sites case. Here the tangent plane
HMC fails even for 𝑁𝑐𝑜𝑛 𝑓 = 100 000 and the statistical uncertainty in the correlators is essentially
100%. ML HMC obtains a weak signal at 𝑁𝑐𝑜𝑛 𝑓 = 50 000 configurations and improves with greater
statistics.

Finally, we compute correlators for a system with 18 sites and the same parameters but with
𝑈 = 3 which is not tractable by exact diagonalization. As shown in the statistical power plot 2.3
this model has a severe sign problem which could not be previously overcome. Again comparing
tangent plane and ML HMC in 2.5 it can be seen that the ML HMC outperforms the tangent plane
HMC and with the 100 000 measurements quite a good signal is obtained.

In all cases we measured on every 10th configuration such that no appreciable autocorrelation is
found. All these simulations indicate that the neural network improves the statistical power and
uncertainty in observables quite drastically even when using a simple architecture. We anticipate
further improvements of our network by incorporating additional layers or incorporating knowledge
of the problem’s symmetries using equivariant layers [92, 93, 94].

The main advantage of our new complex architecture lies in the efficiency of the Jacobian
determinant (A.14) calculation. The form of the determinant (A.14) shows that it can be computed
during the forward pass, reusing intermediate results from the application of the network, and is
linear in the volume |Λ|𝛼NN

𝛼NN = 1 . (2.38)

The calculation of the determinant using a SHIFT layer [60, 61] with the implementation of
PyTorch [90] (through LU-decomposition) scales with the third power of volume, |Λ|𝛼SHIFT i.e.
𝛼SHIFT = 3. Measurements of the execution times of the determinant for the two neural network
architectures are compared in Figure 2.6. The left panel shows the execution time per layer of
log det{𝐽} for different artificial system volumes. These volumes define the size of the configuration
Φ which is randomly sampled and then passed to the networks. On the log-log plot the linear
behavior in the region |Λ| > 1 × 107 – for 𝛼NN – and |Λ| > 7 × 102 – for 𝛼SHIFT – determines the
algorithms’ scaling. A simple least square fit provides the scaling exponents

𝛼SHIFT = 2.955(1)
𝛼NN = 1.008(1),

(2.39)

confirming our expected scaling behavior. We then calculate the speedup achieved with the complex
over the SHIFT network architecture in the right panel of figure 2.6. The expected quadratic speedup
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is confirmed by the benchmark result of

𝛼SHIFT − 𝛼NN = 1.947(2). (2.40)
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Figure 2.4: Momentum-projected correlation functions, measured using tangent plane HMC and
ML HMC are shown in red and blue, respectively. These correlators were calculated with an inverse
temperature 𝛽 = 4, 𝑁𝑡 = 32 time slices, on-site coupling𝑈 = 4, and chemical potential 𝜇 = 3. The
dashed black lines were determined by exact diagonalization. Each row corresponds to different
number of ions (as in Fig. 2.1) increasing from top to bottom. Each column uses a different number
of configurations Ncfg to estimate the correlators, increasing from left to right. Comparing the
statistical power per Ncfg from figure 2.3 suggests to use Ncfg = 1000, 10 000, 100 000 for 2 and 4
sites as the uncertainty strongly differs. However, for 8 sites there is not much difference in the
uncertainty of |Σ | between Ncfg = 1000 and 10 000; we show Ncfg = 1000, 50 000, 100 000 instead.
ML HMC’s improved statistical power shown in Fig. 2.3 is reflected in the accuracy and uncertainty
of these correlators. The sign problem of the 2 site and 4 site models is mild enough such that the
tangent plane gives fairly good results, but the ML HMC gives more precise results with fewer
configurations. For 8 sites the tangent plane HMC completely fails even at Ncfg = 100 000 while
ML HMC succeeds.
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temperature 𝛽 = 4, with 𝑁𝑡 = 32 number of time slices, with 𝑈 = 3 and 𝜇 = 3. The correlators
have been measured with Ncfg = 100 000 configurations. Again, the tangent plane HMC (red) does
not provide any insight while the ML HMC resolves the correlators well. Assuming similarity to
the smaller𝑈 = 4 examples, ML HMC clearly determines the low-energy correlator while tangent
plance HMC fails to find it at all.
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Figure 2.6: The left panel shows the scaling behavior per layer of log det{𝐽} for the previously
used SHIFT neural network, Φ̃ = Φ + 𝑖𝑁𝑁 (Φ) (red), and for the complex-valued paired affine
coupling neural network, Φ̃ = NN(Φ) (blue). On the right panel, we show the speedup for the
different system volumes. Theoretically the Jacobian determinant scaling of the SHIFT network is
expected to be cubic in the system volume while theNN is expected to scale linearly, resulting in a
quadratic speed-up. The solid lines, on the left panel, represent log-log fits whose slopes determine
the measured scaling orders. We find for the slopes of the SHIFT layer (red) a value of 2.955(1)
and forNN (blue) a value of 1.008(1), resulting in a scaling improvement of power 1.947(2). The
timing measurements were performed on JURECA [91] using one AMD EPYC CPU.
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2.5 Conclusions

Mitigating the sign problem induced by a complex action is a major target of algorithmic development
for simulating quantum-mechanical systems. The application of neural networks approximating
Lefschetz thimbles have shown great promise in the past. We show that the supervised training of a
simple complex-valued neural network architecture – paired affine coupling layers with complex
weights and biases – allows for the successful simulation of systems with increasingly severe sign
problems. Our ML HMC approach reduces the sign problem sufficiently and enjoys a statistical
power much greater than vanilla real-plane or tangent-plane HMC, as shown in Figure 2.3, improving
the reliability of the correlator estimators in Figure 2.4. We demonstrated the fidelity and correctness
of our method by simulating 2, 4 and 8 site models and comparing our results to that obtained from
direct diagonalization, obtaining excellent agreement. We then applied our method to the 18 sites
problem where direct diagonalization is not realizable. Our results here thus represent predictions
for this system in a regime where standard Monte Carlo methods are not possible due to the severity
of the sign problem.

Our results were made possible due to the favorable volume scaling of our new method.
Compared to previous methods we drastically reduced the computational cost of the Jacobian
determinant from a general cubic scaling down to linear in the volume. This has been numerically
tested and demonstrated in Figure 2.6. Our computational complexity is therefore dominated by
the application of the neural network itself, and can be further improved by using sparse methods,
convolutional layers, or other layer architectures. We are actively investigating such possibilities.
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2.6 Closing Remarks

The definition of the Jacobian for a R → C function is not straightforward in the case of a
non-holomorphic function. This section presents additional calculations that did not appear in the
published paper [1].

Consider a cycle M, which is parametrized by a function 𝑓 : R → M. In equation 2.24
we explicitly recreate the derivative with respect to the real variable, inspired by combining the
two derivatives (2.23). This argument can also made by considering the complexification of
𝜙→ Φ = 𝜙 + iΦ0

𝑐.

𝜕 𝑓 (Φ)
𝜕𝜙

=
𝜕 𝑓 (Φ)
𝜕Φ

𝜕Φ

𝜕𝜙︸︷︷︸
=1

+𝜕 𝑓 (Φ)
𝜕Φ∗

𝜕Φ∗

𝜕𝜙︸︷︷︸
=1

(2.41)

=
𝜕 𝑓 (Φ)
𝜕Φ

+ 𝜕 𝑓 (Φ)
𝜕Φ∗

(2.42)

However, the Wirtinger derivative is formally defined in aC→ C context. so we have to analytically
continue first, 𝜙 ∈ R→ Φ ∈ C, and parameterizeM by 𝑔 : C→ C. Then a natural extension of
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the induced Jacobian is simply

𝜕𝑔(Φ + iΦ0
𝑐)

𝜕Φ
=
𝜕𝑔(𝜑)
𝜕𝜑

𝜕𝜑

𝜕Φ︸︷︷︸
=1

��
𝜑=Φ+iΦ0

𝑐
+ 𝜕𝑔(𝜑)

𝜕𝜑∗
𝜕𝜑∗

𝜕Φ︸︷︷︸
=0

��
𝜑=Φ+iΦ0

𝑐
(2.43)

When we treat the complexification 𝜙 → Φ(𝜙) = 𝜙 + iΦ0
𝑐 of (2.41) as an analytic function, the

second term in (2.41) vanishes and we recover the result (2.43). The argument extends to C𝑉 .
The next consideration is the Jacobian of the network, after (2.43) suppressing the evaluation of

the linear shift. We start with a single layer

𝜕NNℓ (Φ)
𝜕Φ

=

(
𝜕𝑐ℓ (Φ𝐴,Φ𝐵 )

𝜕Φ𝐴
0

𝜕𝑐ℓ (Φ𝐴,Φ𝐵 )
𝜕Φ𝐵

1

)
(2.44)

Now its determinant is not specific to the use of Wirtinger derivatives as the only contributing parts
are defined to be analytic, condition (2.28). Thus we recover (A.14) for a single layer.

This alone is not very useful, as only half the configuration is transformed. Thus we consider a
pair of two layers with alternating use of the partition of 𝐴& 𝐵, suppressing the layer index ℓ, we
have

𝔓NN(Φ) = NN𝐵𝐴(NN 𝐴𝐵 (Φ)) =
(

𝑐1(Φ𝐴,Φ𝐵)
𝑐2(Φ𝐵, 𝑐1(Φ𝐴,Φ𝐵))

)
. (2.45)

Using this, we can find the jacobian

𝐽𝔓NN ≡
(
𝐽11 𝐽12
𝐽21 𝐽22

)
=

©­«
𝜕𝑐1 (Φ𝐴,Φ𝐵 )

𝜕Φ𝐴

𝜕𝑐1 (Φ𝐴,Φ𝐵 )
𝜕Φ𝐵

𝜕𝑐2 (Φ𝐵 ,𝑐1 (Φ𝐴,Φ𝐵 ) )
𝜕Φ𝐴

𝜕𝑐2 (Φ𝐵 ,𝑐1 (Φ𝐴,Φ𝐵 ) )
𝜕Φ𝐵

ª®¬ (2.46)

=

(
1 0

𝐽21𝐽
−1
11 1

)
·
(
𝐽11 0
0 𝐽22 − 𝐽21𝐽

−1
11 𝐽12

)
·
(
1 𝐽−1

11 𝐽12
0 1

)
, (2.47)

where the second line is a (block) LU decomposition that simplifies the calculation of the determinant
as the L,U have determinant 1. This is only applicable if 𝐽11 =

𝜕𝑐1 (Φ𝐴,Φ𝐵 )
𝜕Φ𝐴

is invertible. Indeed, the
structure of 𝑐ℓ (𝐴, 𝐵), compare equation (A.13), implies 𝐽ℓℓ = 𝑒𝑚ℓ (Φ𝐵 ) , which is invertible. Taking
the determinant of (2.47) factorizes to

det
{
𝐽𝔓NN

}
= det{𝐽11} det{𝐽22} det

{
1 − 𝐽−1

22 𝐽21𝐽
−1
11 𝐽12

}
(2.48)

= det
{
𝜕𝑐1 (Φ𝐴,Φ𝐵)

𝜕Φ𝐴

}
det

{
𝜕𝑐2 (Φ𝐵, 𝑐1)

𝜕Φ𝐵

}
(2.49)

× det

{
1 −

[
𝜕𝑐2 (Φ𝐵, 𝑐1)

𝜕Φ𝐵

]−1
𝜕𝑐2 (Φ𝐵, 𝑐1)

𝜕𝑐∗1

𝜕𝑐∗1 (Φ𝐴,Φ𝐵)
𝜕Φ𝐵

}
. (2.50)

Here the first two factors, (2.49), give rise to the Jacobian factorization as desired in (A.14). In
the case of holomorphic couplings, the third factor, (2.50), reduces to one since 𝜕𝑐∗

ℓ
(𝐴,𝐵)
𝜕𝐵

= 0.
Unfortunately, this is not true for non-holomorphic functions couplings.

We can take advantage of this result by defining an effective Jacobian containing only the first
two factors and reweight according to the non-holomorphic contribution.

⟨O⟩S =

〈
O · det

{
1 − 𝐽−1

22 𝐽21𝐽
−1
11 𝐽12

}〉
Seff〈

det
{
1 − 𝐽−1

22 𝐽21𝐽
−1
11 𝐽12

}〉
Seff

(2.51)

This involves sampling according to the effective action (A.8) using only the efficient to compute
jacobians (2.49). The advantage of this approach is that the entire Jacobian, which is expensive to
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compute, does not need to be evaluated during trajectory generation, but only for the configurations
that are used for measuring observables.

In figure 2.7, the difference between the log det of the effective Jacobian and the full Jacobian
𝐽′ is plotted per configuration. Additionally, figure 2.8 shows the evolution of the action, log
dets of the effective Jacobian and the full Jacobian. These demonstrate, that the contribution
of the non-holomorphic part, which is of order O

(
10−3) , is negligible compared to the effective

Jacobian. Furthermore, the calculation of this non-holomorphic contribution can only be avoided
with holomorphic couplings. An example of this is discussed in the next chapter on the example of
perylene described by the Hubbard model.
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Figure 2.7: Difference between the log-determinant of the effective Jacobian 2.49 and the full
Jacobian. This equals the logarithm of the non-holomorphic contribution, equation 2.50. It appears
negligible compared to the overall magnitude of the Jacobian shown in figure 2.8. These are
evaluated on the 4-site model described in this chapter.

Figure 2.8: Evolution of real and imaginary part of the action S, compare A.3, blue and orange
respectively, effective Jacobian, green and purple respectively, and full Jacobian, red and yellow
respectively. These are evaluated on the 4-site model described in this chapter.
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Chapter 3

Applying Neural Networks to Simulate
Real Systems with Sign Problems

This chapter is based on [2]:

Marcel Rodekamp, Evan Berkowitz, Maria Dincă, Christoph Gäntgen, Stefan Krieg, and Thomas
Luu. “From Theory to Practice: Applying Neural Networks to Simulate Real Systems with Sign
Problems.” In: vol. LATTICE2023. 2023. doi: 10.22323/1.453.0031. arXiv: 2311.18312
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This chapter continues the work on complex valued neural networks to reduce the sign problem
of the Hubbard model away from half filling. To avoid calculating the overall Jacobian on the
measured configurations, a holomorphic architecture is tested. Holomorphic architectures do not
lead to general function approximators [87]. However, the rationale behind this approach is that
an exact approximation of the flow is not necessary; rather, a transformation that reduces the sign
problem is desired.

Non-holomorphic activation functions were used to escape Liouville’s theorem, that is all entire
bounded complex functions are constant. For a holomorphic neural network, it is consequently
inevitable to have it unbounded, which necessitates the implementation of measures ensuring the
preservation of homology. It is clear, that a projection to the real or tangent plane for diverging
configurations is enough to ensure homology [23]. These projections, with the use of a tunable
parameter, can be pushed to large enough values such that they have practically no influence on any
finite simulation.

Furthermore, different methods for generating training data are explored. The algorithm
presented here employs a Runge-Kutta to flow exponentially-sampled configurations. This idea is
adapted from the algorithm in the previous chapter. Under holomorphic flow, the real part of the
action monotonically increases, and almost all configuration flow towards neverland – a region of
infinite action where different thimbles meet [23]. To reduce the number of configuration close to
neverland, the real part of the action is tracked during evolution. Once the change starts to diverge,
as the derivative becomes larger and larger, the evolution is stopped. This procedure ensures that
the training data contains more relevant configurations in relation to the true Boltzmann distribution
than it would be the case if the data were just evolved. This represents an advancement over the
process used in the previous chapter.

Discussed architecture is tested in a molecule with Nx = 20 ions, namely the molecule C20H12
Perylene. Perylene has a bipartite lattice [95, 96, 97], a sign problem thus appears only away from
half filling. As perylene naturally appears in derivatives with a perylene core, it naturally is not
found at half filling [98]. Contrary to graphene, discussed in the previous chapter, a spatial infinite
volume limit is not required for this molecule making it a perfect target to study the efficiency of the
sign problem algorithms with direct practical results.

Perylene has several applications in industry and other fields of physics. For example it can be
used as a dopant in organic light-emitting diodes (OLEDs) [99], as organic semiconductors [26], or
as an acceptor material in organic solar cells [100]. It is further interesting for astronomy as it is
found in interstellar gases and nebulae [101, 102]. Thus, understanding the electronic properties of
this molecule is of great value.

In this chapter, a chemical potential scan, i.e. a scan over doping, is performed at fixed
discretization, Nt = 32, and inverse temperature 𝛽 = 4. The simulations are done on the tangent
plane, compare equation 1.47, where most chemical potentials exhibit a mild sign problem at
this temperature. However, to improve the resolution of the total system charge, a single point,
specifically at 𝜇 = 1.8, was treated with the afore mentioned path deformation, learned by the
holomorphic neural network. Significant reduction of the statistical uncertainty is found using this
neural network. A variational basis of single particle operators is computed to provide insight into
the single particle spectrum. Effective masses have been computed for a selected set of chemical
potentials to provide a first estimate of energies.

A more thorough analysis of the molecule including a continuum extrapolation and careful
analysis of the energy levels can be found in the next chapter 4.

Ideas, development, and writing is primarily done by myself, based on the results of the previous
chapter. Co-authors were involved through discussions and advice. Maria Dincă, as DAAD Rise
student, helped testing and debugging components of the architecture.
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Figure 3.1: Graphical representation of the perylene molecule. The sites represent carbon-ions,
while links indicate allowed hopping. External hydrogen atoms are not drawn.

3.1 Introduction

The challenge of the computational sign problem poses obstacles for effective importance sampling
when dealing with complex-valued distributions in Markov-Chain Monte-Carlo algorithms, like
Hybrid Monte Carlo (HMC). This challenge is pervasive when sampling from the configuration
space of many physical systems, including but not limited to lattice QCD at finite baryon chemical
potential, doped condensed matter systems in equilibrium, and the real-time evolution of quantum
systems. A method to substantially alleviate the sign problem involves deforming the original (real)
manifold of integration into a sign improved (complex) one [62, 23, 63, 64]. Formal developments
have spurred exploration into leveraging Lefschetz thimbles [21, 54, 55, 56, 57, 58, 59] —these
are high-dimensional counterparts to contours of steepest descent and can be located through
holomorphic flow. However, pinpointing the location of each relevant thimble’s saddle point, or
critical point, and determining the relevant sampling ‘direction’ around these points is prohibitive.
An alternative approach is to employ neural networks to learn the mapping from an initial manifold
to a beneficial one, including one that approximates the contributing thimbles to the integral [60,
65, 61, 1].

In this work, we explore the use of this method for perylene, 𝐶20𝐻12 [97]. The molecule is
(almost) planar and sp2-hybridized making it a perfect target for the Hubbard model [95]. We show
some preleminary results for a chemical potential (doping) scan. Practical applications range from
organic semiconductors [26], over organic light emitting diodes (OLEDs) [99], to organic solar
cells [100]. Perylene also falls under the class of so-called polycyclic aromatic hydrocarbon (PAH)
molecules thought to be ubiquitous in interstellar gases and nebulae [101]. A detailed accounting of
electronic properties of PAHs, like perylene, could help constrain interstellar gas models [102].

3.2 Formalism

Given a fixed spatial arrangement of ions 𝑋 , the Hubbard model in particle-hole basis reads [66, 30,
31]

H [𝐾,𝑉, 𝜇] = −
∑︁
𝑥,𝑦∈𝑋

(
𝑝†𝑥𝐾

𝑥𝑦 𝑝𝑦 − ℎ†𝑥𝐾 𝑥𝑦ℎ𝑦
)
+ 1

2

∑︁
𝑥,𝑦∈𝑋

𝜌𝑥𝑉
𝑥𝑦𝜌𝑦 + 𝜇

∑︁
𝑥∈𝑋

𝜌𝑥 , (3.1)

where the amplitudes in 𝐾 encode the hopping of fermionic particles 𝑝 and holes ℎ, interactions
between these are modelled by the potential 𝑉 , 𝜌𝑥 = 𝑝†𝑥 𝑝𝑥 − ℎ†𝑥ℎ𝑥 is the net charge per site, and the
chemical potential 𝜇 incentivizes charge. We restrict our attention to the case where 𝐾 = 𝜅𝛿⟨𝑥𝑦⟩
encodes the structure of perylene, compare figure 3.1, with nearest-neighbor hopping, and an on-site
interaction𝑉 = 𝑈𝛿𝑥𝑦 . In this case, when 𝜇 = 0, the Hamiltonian in (A.1) corresponds to the neutral,
‘half-filled’ system.
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Trotterizing the thermal trace into 𝑁𝑡 timeslices, inserting Grassmannian resolutions of the
identity, and linearizing the interaction via the Hubbard-Stratonovich transformation [29] exposes
the Hubbard action

𝑆 [Φ | 𝐾,𝑉, 𝜇] = 1
2

∑︁
𝑥,𝑦∈𝑋

𝑡∈[0,𝑁𝑡−1]

Φ𝑡 𝑥 (𝛿𝑉−1)𝑥𝑦Φ𝑡 𝑦 − log det{𝑀 [Φ | 𝐾, 𝜇] 𝑀 [−Φ | − 𝐾,−𝜇]},

(3.2)
where Φ ∈ R |Λ | is the (auxiliary) hubbard field on the spacetime lattice Λ = [0, 𝑁𝑡 − 1] ⊗ 𝑋 and
𝛿 = 𝛽/𝑁𝑡 . We use the exponential discretization [19] for the fermion matrices

𝑀 [Φ | 𝐾, 𝜇]𝑥′𝑡 ′;𝑥𝑡 = 𝛿𝑥′𝑥𝛿𝑡 ′𝑡 −
(
𝑒𝛿 (𝐾+𝜇)

)
𝑥′𝑥
𝑒+𝑖Φ𝑥𝑡 𝛿𝑡 ′ (𝑡+1) (3.3)

with antiperiodic boundary conditions in time. With this we can express the thermal trace as path
integral

⟨O⟩ = 1
Z Tr

{
O𝑒−𝛽H

}
=

1
Z

∫
D [Φ] 𝑒−𝑆 [Φ]O [Φ] . (3.4)

The partition functionZ is the trace/integral without the observable. On a bipartite lattice we may
replace the −𝐾 in the holes’ fermion matrix with +𝐾 leading to a real and positive determinant at
vanishing chemical potential. When 𝜇 is finite the determinant is complex valued and results in a
sign problem.

3.3 Method

As in our previous work [61, 1, 7], for a Monte-Carlo algorithm with complex action we can separate
the real and imaginary parts, 𝑆 = Re{𝑆} + i Im{𝑆}, and rewrite the path integral as

Z =

∫
D [Φ] 𝑒−𝑆 =

∫
D [Φ] 𝑒− Re{𝑆}𝑒− i Im{𝑆} ∝

〈
𝑒− i Im{𝑆}〉

Re{𝑆} ≡ Σ (3.5)

where |Σ | ∈ [0, 1] is the statistical power. Sampling according to the real part of the action and
then applying reweighting,

⟨O⟩ =

〈
𝑒− i Im{𝑆}O

〉
Re{𝑆}〈

𝑒− i Im{𝑆}
〉

Re{𝑆}
=

1
Σ

〈
𝑒− i Im{𝑆}O

〉
Re{𝑆} , (3.6)

allows the computation of observables. This procedure fails if the statistical power |Σ | cannot be
reliably distinguished from zero [20, 61, 54, 71].

Combining reweighting with path deformation techniques offers a promising approach to
mitigating the sign problem. The primary objective is to expand the accessible parameter space
for computation, ultimately allowing extrapolations to the continuum limit, 𝛿 → 0, and/or the
zero-temperature limit, 𝛽 → ∞. The core idea involves manipulating the integration contour in
a way that enhances the statistical power. One noteworthy method in this context is the use of
Lefschetz thimbles, which eliminate fluctuations in the imaginary part of the action. However, it is
essential to acknowledge that these thimbles are notoriously challenging to compute in practical
simulations. As a result, the focus shifts towards harnessing a more versatile transformation to a
sign-optimized manifold, denoted as M̃. Crucially, Cauchy’s theorem assures us that expectation
values of holomorphic observables remains unchanged under this transformation1:

⟨O⟩ = 1
Z

∫
M̃
D

[
Φ̃

]
𝑒−𝑆[Φ̃]O

[
Φ̃

]
=

1
Z

∫
D [Φ] 𝑒−𝑆[Φ̃(Φ)]+log det{𝐽Φ̃ [Φ]}O

[
Φ̃ (Φ)

] (3.7)

1Strictly speaking, this holds when no singularities are crossed when performing the contour deformation, which is
the case in our problem.

40



A simple transformation is the mapping to the tangent plane Φ̃ [Φ] = Φ + i 𝜙0. As outlined
in [7] a transcendental equation

𝜙0/𝛿 = −
𝑈

𝑁𝑥

∑︁
𝑘

tanh
(
𝛽

2
[𝜖𝑘 + 𝜇 + 𝜙0/𝛿]

)
(3.8)

can be used to identify this plane. The sum is over the eigenvalues 𝜖𝑘 of the hopping matrix 𝐾.
This adds no additional computational cost to the simulation and thus forms our starting point for
further transformations.

Based on our earlier machine learning approach [1], we can use a neural network to map to
a sign optimized manifold M̃, i.e. Φ̃ [Φ] = NNΦ + 𝑖𝜙0. We continue to use coupling networks
to enable a tractable Jacobian determinant. However, we changed the activation function to be
holomorphic compared to our earlier approach which simplified the training procedure significantly.
A single layer thus reads

NN𝑙 [Ψ]𝑡 ,𝑥 =
{
𝑒𝑠𝑙 (Ψ𝐵 ) ⊙ Ψ𝐴 + 𝑡𝑙 (Ψ𝐵) (𝑡, 𝑥) ∈ 𝐴
Ψ𝐵 (𝑡, 𝑥) ∈ 𝐵

(3.9)

where 𝑠, 𝑡 : C|Λ|/2 → C
|Λ|/2, Ψ𝐵 ↦→ 𝑤′ · 𝑃 [𝑤 · Ψ𝐵 + 𝑏] + 𝑏′ are linear networks; the activation 𝑃 [·]

is a polynomial of degree 3. We always pair two of these layers to form a single transformation
that allows us to change every value of the input configuration. Notice, this network is unbounded
at Ψ → ±∞ and thus escapes Liouville’s theorem [103, 104]. Furthermore, the homology
class is completely determined by the asymptotic behavior of the network. This means that
any parametrization of the contour M̃ preserves the homology class if it approaches a constant
asymptotically. To achieve this, we implement a projection layer

P𝜎 [Ψ]𝑖 = Re{Ψ}𝑖 + i Im{Ψ}𝑖𝑒
− |Ψ𝑖 |

2

𝜎2 (3.10)

which pushes the imaginary part down towards the real manifold. The parameter 𝜎 can be chosen
arbitrarily. Choosing 𝜎 ≫ 1 but finite, the projection virtually becomes the identity up to O

(
𝜎−2)

and the Jacobian remains unchanged 𝐽Φ̃ [Φ] = det{NNΦ} + O
(
𝜎−2) . Care has to be taken if the

configuration value NNΦ becomes comparable to 𝜎. Naturally, such configuration values have
small weights; thus, they practically never appear.

We train the parameters – 𝑤, 𝑤′ ∈ Mat|Λ|/2 [C] , 𝑏, 𝑏′ ∈ C|Λ|/2 per layer – of the network using
training data sets of flowed configurations [61]. The training data is generated by integrating
the holomorphic flow equation, starting from configurations sampled with a normal-distribution
N (𝜇 = 0, 𝜎 = 𝛿𝑈) and mapped to the tangent plane, with a Runge Kutta and accepting only
configurations that preserve the imaginary part of the action, are flowed enough, and are not in
neverland 2. A graphical representation of this can be found in figure 3.2. Once the data is gathered
we initialize the network with random parameters ∼ 𝑈 (0.01, 0.01) [105], and train it using the
Adam optimizer [106] with a learning rate of 10−3. For the first iterations we use a plain L2-loss
to measure the distance between the training data and the network output. After that a couple of
iterations are trained by comparing the real part of the action plus the preservation of the imaginary
part, L

(
Φ̃,NNΦ + i 𝜙0

)
= |ΔRe{𝑆}| +

��1 − 𝑒iΔ Im{𝑆} ��. Once a desired precision (< 1𝑒 − 4) is
reached, we perform a short HMC simulation, Ncfg = 1000, and measure the statistical power |Σ |.
If the statistical power is increased, we accept the new network parameters and continue the HMC
simulation resulting in the observables presented in the next section.

2By neverland we denote regions of infinite Re{𝑆}. Points where Lefshetz thimbles meet have diverging Re{𝑆} and
are not relevant for the training.
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Φ(𝜏), Re{𝑆}target ∼ 𝑒− Re{𝑆} Φ(𝜏 + Δ𝜏)
Runge Kutta ��1 − 𝑒𝑖Δ Im{𝑆} �� ≤ 𝜖

Δ𝜏*=𝛿attun

Re{𝑆 [Φ(𝜏 + Δ𝜏)]}
<

Re{𝑆}target

𝜏+=Δ𝜏

𝜏 > 𝜏min

Store Trajectory

True

Next Trajectory

Figure 3.2: Algorithm to generate training data. Each step integrates the flow equation for a time
Δ𝜏 and checks that the imaginary part of the action is preserved for the step size. The step size
becomes updated accordingly. Further, only data that stems to be relevant for training, i.e. is not
flowed to little and is not in neverland, is accepted.

3.4 Results

3.4.1 Correlation Functions

The basic building block of Monte-Carlo simulations for physical systems is the correlation function

𝐶𝑥,𝑦 (𝜏) =
〈
𝑝𝑥 (𝜏)𝑝†𝑦 (0)

〉
=

〈
𝑀−1
(𝜏,𝑥 );(0,𝑦) [Φ | 𝐾, 𝜇]

〉
, (3.11)

as it encodes the physics of a single excitation-annihilation process. In the following we block
diagonalize the correlation matrix using the symmetry eigenspaces of the ion lattice X

𝐶𝑘 (𝜏) = 𝛿𝑘,𝑘′𝔲𝑘,𝑥𝐶𝑥,𝑦 (𝜏)𝔲𝑦,𝑘′ , (3.12)

where the unitary matrix 𝔲 is determined by the irreducible representations of the point group 𝐷2ℎ
of 𝑋 . In principle, a further diagonalization within the irreducible blocks is required, however, we
found that the diagonal terms are dominant in the cases we have studied thus far and so only take
the diagonal correlators for study in these proceedings. To classify the molecule and understand the
entirety of its (single particle) spectrum a full parameter scan in the interaction strength and its
doping needs to be performed as well as the continuum and zero temperature limit (𝛽, 𝑁𝑡 →∞). In
this preliminary results we will focus on the application of the neural network to the sign problem.
Hence, we fix 𝑁𝑡 = 32 and 𝛽 = 4, while the interaction and chemical potential strength are indicated
at the specific results. In Figures 3.3 we compare correlator measurements from HMC on the
tangent plane, on the left, and from machine learning enhanced HMC (MLHMC), on the right.
These are computed at fixed𝑈 = 2 and 𝜇 = 1.7. As expected the MLHMC resolves the correlator
much better than the HMC on the tangent plane. This chemical potential is the first where the
computational extra cost of the neural network can be justified.

3.4.2 Charge

The chemical potential is an effective description of the doping of the system. We translate this by
measuring the total system charge

𝑄 =

𝑁𝑥∑︁
𝑥=0
⟨𝜌𝑥⟩ =

𝑁𝑥∑︁
𝑥=0

𝐶𝑥,𝑥 (𝜏 = 0). (3.13)

In Figure 3.4 we present the total charge as a function of the chemical potential at fixed 𝑈 = 2.
The interaction strength is the same as for the correlators in Figure 3.3. We can identify, that
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Figure 3.3: Perylene correlator for𝑈 = 2, 𝜇 = 1.7 simulated using HMC on the tangent plane (top)
and machine learning guided HMC (bottom)
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Figure 3.4: Perylene total charge 𝜇-scan at𝑈 = 2

the statistical error at 𝜇 = 1.7 is much smaller for the MLHMC. At cold temperatures, 𝛽 → ∞,
we expect a stepwise behaviour for integer charge changes at certain chemical potentials. This
is washed out here due to the small value of 𝛽. To fully classify the doping of the molecule a
zero-tempreature limit must be taken which will increase the use of the neural network as the sign
problem exponentially becomes worse with increasing 𝛽.

3.4.3 Effective Masses

To study the molecule for various applications like energy production in organic solar cells it is
required to get an understanding of the low lying energy spectrum of a particle-hole excitation. At
non-interacting systems𝑈 = 0, this can be done analytically as the single-particle energy is given
by the eigenvalues of the hopping matrix 𝐸 𝑘𝑠𝑝 = 𝜖 𝑘 . Doping simply shifts these 𝐸 𝑘

𝑠𝑝/𝑠ℎ = 𝜖
𝑘 ± 𝜇.

Further, if particles and holes do not interact the exciton energy is simply the sum 𝐸 𝑘 = 𝐸 𝑘𝑠𝑝 + 𝐸 𝑘𝑠ℎ,
which, noticeably, is independent of doping. As soon as interactions are turned on this is not true
anymore and the exciton energy needs to be measured explicitly involving computations of 4 point
functions. For this proceedings we take a first step into that direction and measure the single particle
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(a) Perylene effective mass𝑈 = 2, 𝜇 = 0 (HMC)
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(b) Perylene effective mass𝑈 = 4, 𝜇 = 0 (HMC)
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(c) Perylene effective mass𝑈 = 2, 𝜇 = 0.4 (HMC)
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(d) Perylene effective mass𝑈 = 2, 𝜇 = 1.7 (MLHMC)

energy at various interaction strengths and chemical potentials. In the low-temperature spectral
decomposition 𝐶𝑘 (𝜏) = 𝐴0𝑒

−𝐸𝑘0 𝜏 + O
(
𝑒−𝐸

𝑘
1 𝜏

)
one expects ground state contributions in the large

𝜏 limit, defining the effective mass

𝑚𝑘eff
��
𝜏
=

log𝐶𝑘 (𝜏 + 𝛿) − log𝐶𝑘 (𝜏)
𝛿

. (3.14)

The effective mass serves as a simple estimator for the energy 𝐸 𝑘𝑠𝑝 ≈ 𝑚𝑘eff

��
𝜏=𝛽/2 that neglects excited

states. In figures 3.5a to 3.5d we present a selection of effective mass plots for two interaction
strengths𝑈 = 2, 4 (3.5a,3.5b) at zero chemical potential and two chemical potentials 𝜇 = 0.4, 1.7 at
fixed𝑈 = 2 (3.5c,3.5d). These plots suggest that the interaction strength has a great effect on the
excited states, as the plateau becomes less pronounced, but only little on the ground state energy, i.e.
the smallest positive energy value. Further, we can identify that the gap between states opens as the
interaction strength is increased. Additionally, the change of chemical potential clearly shifts the
ground state gap, which, together indicate a rich energy spectrum of the molecule.

3.5 Summary

The numerical sign problem affects Monte-Carlo simulations of various systems. In this contribution
we modelled the electronic structure of the sp2-hybridized molecule 𝐶20𝐻12 (perylene) with a
contact-interaction Hubbard model which is then simulated using the Hybird/Hamilton Monte-Carlo
algorithm. At finite chemical potential, a parameter to control doping, a sign problem appears
which we tackle using reweighting and contour deformations. Starting with simple deformations,
the tangent plane, and continuing with neural networks at larger 𝜇 we are able to resolve the total
system charge and single particle energy spectrum of perylene. To limit thermal contamination of
the energy states, we require that 𝛽𝐸0 ≫ 1, where 𝐸0 is the lowest single particle excitation energy
in the system. In our case we have 𝛽𝐸0 ∼ 1.5, which should be increased in future calculations. We
plan to extend the parameter space and perform a more detailed analysis of the system, including
the study of particle-hole excitations which are relevant for practical application of the molecule.
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In this chapter, a Hamiltonian Monte Carlo study of doped C20H12 perylene is presented. It
tight-binding the work published in [2], specifically chapter 3, to encompass lower temperatures, a
continuum extrapolation, as well as a thorough analysis of the single particle spectrum.

Following the previous chapter 3, the molecule can be modelled using the Hubbard Hamiltonian,
due to its sp2 hybridized bonds [95]. As mentioned, the electronic properties of this molecule
are of great interest to industry to improve and study organic semiconductors [26], organic solar
cells [100], or organic light emitting diodes [99], but also to astronomy research as the polycyclic
aromatic hydrocarbon (PAH) molecules, that perylene forms, are found in interstellar gases and
nebulae [101, 102]

A particular focus of this study is the systematic scan over chemical potential, which corresponds
to a scan over doping. This is particularly relevant as perylene naturally comes with groups attached
– as perylene derivatives. These groups alter the amount of charge carriers in the system which
we model effectively with the average chemical potential 𝜇. Consequently, one primary objective
of this study is to quantify the amount of doping by examining the total system charge ⟨𝑄⟩ as a
function of chemical potential. Understanding this relationship allows to classify many electronic
properties through the single particle spectrum. To this end, the spectrum is calculated as a function
of chemical potential by calculating correlators of operators from a variational basis.

In order to facilitate this the analysis of said correlators an automatic fitting procedure is
developed. This procedure requires only a set of fit models and some prior information on the
system which we obtain through the analytically calculable non-interacting Hubbard model. With
this procedure the single particle energy spectrum, relative to the ground state, is evaluated. Given
the number of correlators to be analysed, an automatic procedure is necessary. After all, this study
includes 108 ensembles divided into twelve different chemical potentials, 𝜇 = 0, 0.1, . . . , 1.1, across
three inverse temperatures 𝛽 = 4, 6, 8, and with three discretization, Nt = 32, 64, 96, to control
continuum extrapolations. The on-site interaction is kept at𝑈 = 2. Notice, all model parameters
are provided in lattice units, 𝜅 = 1. On each ensemble a total of 20 correlators are analysed to
obtain values for the single particle spectrum. In total this means to analyse 2160 correlators.
The results of this study demonstrate significant deviation from the non-interacting tight-binding
model especially at large chemical potentials, which highlights the importance of encompassing
interactions to accurately describe electronic properties of perylene.

As previously discussed, Monte Carlo simulations of the Hubbard model at finite chemical
potential simulations suffer from the notorious sign problem. Unfortunately, the vast parameter
space explored in this study did not permit the training of neural networks to mitigate this issue. In
the previous section it was discussed that the sign problem is mitigated sufficiently on the tangent
plane for a large range of chemical potentials. This conclusion assumed inverse temperature of
𝛽 = 4 but does not extend to colder temperatures discussed here. Therefore, the next simple step is
to simulate on the next-to-leading order plane discussed around equation (1.51), for more details
see reference [7]. This ansatz allows to calculate a simple manifold by a numerical minimization
of the effective action (1.49). It is simple enough to be applied in such a parameter scan. Further,
within the ensemble of simulations, we have identified a robust signal using the next-to-leading
order plane.

Also here, the work presented is primarily done by me. The used simulation code, the
Nanosystem simulation library (NSL) [10], is developed by me with additional help by the
contributors seen on the github page. Further, the analysis package [11] is primarily developed by
me, with extensive help, in debugging and testing, from Dr. Giovanni Pederiva. The next-to-leading
order planes where calculated with a python code developed in part by Cristoph Gäntgen and
adapted by me. The other co-authors contributed through discussions and in running simulations.
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Figure 4.1: Graphical representation of the perylene molecule. The sites represent carbon-ions,
while links indicate allowed hopping. External hydrogen atoms are not drawn.

4.1 Introduction

The perylene molecule C20H12, pictured in Fig. 4.1, has attracted great interest in various techno-
logical applications, ranging from organic semiconductors [26, 107], organic light emitting diodes
(OLEDs) [99], to organic solar cells [100, 108, 109]. As it is a polycyclic aromatic hydrocarbon, it
is also of great interest to astronomy; perylene and its derivatives have been found in interstellar
gases and nebulae [110, 101, 102].

The ionization energy and electron affinity of perylene is well studied experimentally [111,
112]. Kinetic Monte Carlo simulations have also been conducted involving ensembles of perylene
molecules, see e.g. [113, 114]. Theoretical studies of the electronic structure of perylene have been
performed using various methods, for example density functional theory (DFT) [110, 115] and
DMRG [96].

In derivatives of perylene the 𝜋 orbitals of the sp2-hybridized valence orbitals will not be
half-filled; additional bonded groups may supply or draw away electrons. However, to our
knowledge, little is theoretically known about the electronic structure of a single doped perylene
molecule. We therefore model perylene’s 𝜋 electrons using the Hubbard model and perform ab-intio
grand-canonical Monte Carlo simulations to map the single-electron spectrum as a function of the
electron chemical potential 𝜇. We describe this model in Sec. 4.2.1.

We describe our computational approach in Sec. 4.2.2. In particular, at non-zero 𝜇 our system is
not half-filled and our simulations are afflicted by a numerical sign problem. We briefly describe the
issue and how we leverage recent developments to nevertheless get reliable statistical estimates [67,
59, 116, 69].

We measure the global charge and single-particle (and single-hole) euclidean-time correlation
functions from which we extract energy spectra. In section 4.3 we explain how this analysis is
performed but relegate many details to Appendix 4.A and further results to Appendix 4.B. Finally,
we summarize our findings in section 4.4.

4.2 Formalism

4.2.1 Modelling Perylene

Perylene consists of sp2-hybridized carbon atoms arranged in five hexagons [95, 97], giving Nx=20
ions as shown in figure 4.1, and twelve hydrogen atoms bonded to the carbons on the boundary
(which are not shown in fig. 4.1). The hybridized nature of the carbon bonds allows the valence 𝜋
electrons to hop along the bonds. We model the kinematics and interactions of these 𝜋-electrons
with the Hubbard model

H [𝜅,𝑈, 𝜇] = −𝜅
∑︁
⟨𝑥,𝑦⟩∈𝑋

(
𝑝†𝑥 𝑝𝑦 − ℎ†𝑥ℎ𝑦

)
+ 𝑈

2

∑︁
𝑥∈𝑋

𝑞2
𝑥 − 𝜇

∑︁
𝑥∈𝑋

𝑞𝑥 . (4.1)
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The hopping strength 𝜅 (which we take to be bond-independent) is the amplitude for a free electron
to traverse the bond between nearest neighbors ⟨𝑥, 𝑦⟩. We work in the particle/hole basis for
computational reasons [19]; the 𝑝𝑥 (ℎ𝑥) represents a particle (hole) annihilation operator. We
denote the collection of ions by X. The strength of interaction depends on the charge per site
𝑞𝑥 = ℎ

†
𝑥ℎ𝑥 − 𝑝†𝑥 𝑝𝑥 (so that particles represent electrons with negative electric charge), and is

controlled by the onsite term𝑈; a more realistic two-body interaction
∑
𝑥𝑦 𝑞𝑥𝑉𝑥𝑦𝑞𝑦 can be easily

incorporated into our simulations.
Typical applications of perylene involve attaching additional chemical structures to a perylene

core [117, 118]. To model the electrons in these chemical derivatives in our simulations, we apply a
homogeneous effective chemical potential 𝜇 coupling to the total system charge. For simplicity,
we will provide all physical quantities in units of the hopping strength, i.e. 𝑈/𝜅, 𝜇/𝜅, 𝐸/𝜅, etc. and
in what follows, we will express these quantities already rescaled by 𝜅. Following [96], we can
reintroduce physical units setting 𝜅 = 2.4 eV.

The point symmetry group of perylene is typically identified as 𝐷2ℎ. Our Hamiltonian (A.1),
however, treats the ions as a fixed graph with no knowledge of its three-dimensional embedding,
and we can split the symmetry into the dihedral group 𝐷2 and a Z2 whose only action is to flip spin
components (which amounts to an exchange of particles and holes). Hamiltonian eigenstates will
have definite spin and will transform in the 𝐴, 𝐵1, 𝐵2, and 𝐵3 representations of 𝐷2, which are all
one-dimensional.

We can perform a basis transformation of the 20 single-particle position-space operators. The
vector space defined on the 20 sites can be decomposed into invariant subspaces on which the
action of the 𝐷2 symmetries act irreducibly as 𝐴, 𝐵1, 𝐵2, and 𝐵3; in a slight but common abuse of
language we identify these invariant subspaces as the irreps themselves. The irreps have multiplicity
6, 4, 6, and 4, respectively.

We can arrange for this transformation to diagonalize the hopping matrix 𝐾 = 𝜅𝛿⟨𝑥,𝑦⟩ These
operators are shown in detail in Appendix 4.A.4; each operator has definite irrep and tight-binding
energy 𝜖 . In the non-interacting 𝑈 = 0 case these irreducible operators carry definite energy
and satisfy [𝐻, 𝑝†

Λ𝑖
] = 𝜖

Λ𝑖
𝑝
†
Λ𝑖

where the state is labelled by irrep Λ and an index 𝑖. The same
transformation can be made to the holes; the only difference arises from the sign of the hopping
term for the holes in the Hamiltonian (A.1). Some operators have positive tight-binding energy
and others have negative tight-binding energy; in the non-interacting case the global ground state
consists of every negative-energy operator applied to the Fock vacuum.

4.2.2 Simulation Methods

We compute observables O expressed through the thermal trace over all Fock space states,

⟨O⟩ = 1
Z Tr

{
O𝑒−𝛽H

}
. (4.2)

Here the partition functionZ = Tr
{
𝑒−𝛽H

}
and 𝛽 = 1/𝑇 is the inverse temperature in natural units,

𝑐 = 𝑘𝐵 = ℏ = 1. We Trotterize 𝛽 into 𝑁𝑡 timeslices each separated by the temporal lattice spacing
𝛿 = 𝛽/Nt. We introduce a continuous auxiliary field Φ on every site of the spacetime lattice via a
Hubbard-Stratonovich transformation [24, 119, 120, 32] Φ = (Φ𝑡 𝑥) ∈ R |Λ | , with indices on the
spacetime lattice Λ = [0,Nt − 1] ⊗ 𝑋 . Exactly integrating out the fermions transforms our problem
from a discrete sum over Fock states into a path integral [29, 66, 30, 31, 25, 61],

⟨O⟩ = 1
Z

∫
D [Φ] 𝑒−𝑆 [Φ]O [Φ] (4.3)

where the action 𝑆 is

S [Φ | 𝜅,𝑈, 𝜇] = Φ2

2𝛿𝑈
− log det{𝑀 [ Φ | 𝜅, 𝜇]} − log det{𝑀 [-Φ | -𝜅, -𝜇]} , (4.4)
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and the Gaussian piece can be replaced by 1/2 Φ(𝛿𝑉)−1Φ for a more generic interaction, as long
as the interaction matrix 𝑉𝑥𝑦 is positive definite. The fermion matrices are in the exponential
discretization [19]

𝑀 [Φ | 𝐾, 𝜇]𝑥′𝑡 ′;𝑥𝑡 = 𝛿𝑥′𝑥𝛿𝑡 ′𝑡 −
(
𝑒𝛿 (𝐾−𝜇)

)
𝑥′𝑥
𝑒+𝑖Φ𝑥𝑡B𝑡 ′𝛿𝑡 ′ (𝑡+1) (4.5)

where B encodes the anti-periodic boundary conditions in time. We perform the path integral
stochastically using the Hybrid/Hamilton Monte Carlo (HMC) algorithm [77].

At finite chemical potential the fermionic part of the action S can become complex, and removes
any ergodicity problem [19]. However, it also introduces the so-called ‘sign problem’ since 𝑒−S can
oscillate. A severe sign problem ultimately results in unreliable statistical estimates of observables
with finite statistics.

Complex actions and integrand oscillations can arise across a wide set of computational models
and approaches, ranging across 𝜙4 theory [56, 80], topological (Chern-Simons) models [58],
molecular systems [121] and lattice QCD [72, 73], for example. In recent years there has been
a great push to leverage contour deformation to mitigate the sign problem in all these theories.
In addition to trying to deform the contour integration onto Lefschetz thimbles [55, 75, 54, 68,
82], machine learning methods [54, 65, 122, 123, 23] can often but not always [124] locate
integration contours with much more modest problems. Related deformations to complex Langevin
methods [20, 76] are also undergoing rapid development. Moreover, the signal-to-noise problem
present for many observables in Markov Chain Monte Carlo simulations can be improved with a
similar approach [63, 64].

Leveraging experience gained while developing these methods for the Hubbard model [19, 61,
1, 5, 7, 8, 2], we perform a simple and cost-efficient transformation by incorporating a spacetime
constant imaginary shift 𝜙𝑐

Ψ(Φ) = Φ + i 𝜙𝑐 . (4.6)

Such a shift represents an integration manifold in the complex plane that is parallel to the real
plane. For this investigation we utilize the next-to-leading order (NLO) plane [7], whereby 𝜙𝑐 is
determined by including quantum (thermal) corrections to the saddle-point approximation of 𝑆. We
briefly motivate this method in Appendix 4.C. Even with this shift in the integration contour the
action remains complex and we perform HMC changing the real part of Φ according to the real
part of the HMC force, accepting proposed changes according to the real part of the action, and
reweighting with the imaginary part of the action as described in Appendix 4.A.1.

4.3 Analysis

The goal of this investigation is to assess the single particle spectrum in relation to the system’s total
charge, as a measure of doping. These two quantities can be obtained by calculating the euclidean
time single particle (𝑝) and hole (ℎ) correlators

Csp
𝑥,𝑦 (𝜏) =

〈
𝑝𝑥 (𝜏)𝑝†𝑦 (0)

〉
=

〈
𝑀−1
𝑥,𝜏;𝑦,0 [ Φ| 𝜅, 𝜇]

〉
,

Csh
𝑥,𝑦 (𝜏) =

〈
ℎ𝑥 (𝜏)ℎ†𝑦 (0)

〉
=

〈
𝑀−1
𝑥,𝜏;𝑦,0 [-Φ|-𝜅, -𝜇]

〉
,

(4.7)

which we can analyze using the standard spectral decomposition (Appendix 4.A.3).
After averaging particles and time-reversed holes we have a 20 × 20 matrix of correlators

for each ensemble. The irreducible representation is a good quantum number, allowing us to
block-diagonalize to four small correlators, one for each 𝐴 (6 × 6), 𝐵1 (4 × 4), 𝐵2 (6 × 6), and 𝐵3
(4 × 4) using the irreducible single-particle operators. Interactions can mix the operators within
an irrep and we variationally extract the six or four interacting energy levels closest to the fully
interacting ground state as explained in Appendix 4.A.4.
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The chemical potential 𝜇 controls the total charge of the system. To quantify its effect, we
compute the total system charge by

⟨𝑄⟩ =
∑︁
𝑥∈𝑋

〈
𝑞𝑥

〉
=

∑︁
𝑥

(〈
ℎ†𝑥ℎ𝑥 −

〈
𝑝†𝑥 𝑝𝑥

〉〉)
=

∑︁
𝑥

(〈
𝑝𝑥 𝑝

†
𝑥

〉
−

〈
ℎ𝑥ℎ

†
𝑥

〉)
=

∑︁
𝑥

(
Csp
𝑥,𝑥 (0) − Csh

𝑥,𝑥 (0)
)
,

(4.8)

as a function of 𝜇.
In the non-interacting case we can compute the total charge

⟨𝑄⟩ |𝑈=0 = 2
∑︁
Λ𝑖

1
𝑒−𝛽 (𝜖Λ𝑖+𝜇) + 1

− Nx, (4.9)

lim
𝛽→∞
⟨𝑄⟩ |𝑈=0 = 2

∑︁
Λ𝑖

Θ
(
𝜖Λ𝑖 + 𝜇

)
− Nx. (4.10)

The factor of two comes from the spin degeneracy and the subtraction by 𝑁𝑥 ensures that 𝑄 = 0
when 𝜇 = 0.

At non-zero interaction,𝑈 ≠ 0, observables are computed using the NLO-plane HMC algorithm
as discussed in the previous section. This alleviates the sign problem sufficiently to allow us to
extract statistically meaningful quantities. Further details on the analysis steps can be found in
appendix 4.A.

We perform our studies using an on-site interaction of𝑈 = 2. This provides us with an initial
qualitative behavior of perylene’s charge 𝑄 as a function of 𝜇. In the future we aim to tune this
on-site coupling to a more realistic value or use a more realistic two-body interaction.

To access different total charges, we scan over the chemical potential 𝜇 = 0, 0.1, . . . , 1.1.
This choice is inspired by the non-interacting charges discussed in section 4.3.2. We control the
temporal continuum limit using three time discretizations Nt = 32, 64, 96 and study the temperature
dependence with 𝛽 = 4, 6, 8. For each parameter combination we measure a total of Ncfg = 10 000
configurations.

4.3.1 Statistical Power

Before discussing the analysis of the physical observables, i.e. (4.7) and (4.8), it is important to
map out the severity of the sign problem. A typical measure is the absolute average phase, called
the statistical power,

|⟨Σ⟩| =
���〈𝑒− i Im{S[Φ] }〉���. (4.11)

A value of 1 for the statistical power implies no sign problem, whereas a value of 0 represents the
most severe sign problem. One can further relate the statistical power to an effective number of
configurations Neff

cfg ∝ |⟨Σ⟩|
2Ncfg [20]; when the statistical power is small each configuration is

worth less. The average phase appears in the denominator when reweighting (Appendix 4.A.1) and,
therefore, for small, hard-to-estimate statistical powers, stochastic estimates of observables become
unreliable.

In figure 4.2 we show the statistical power as a function of 𝜇 plotted for the various 𝛽 and Nt.
With Ncfg = 10 000 configurations, simulations with |⟨Σ⟩| ≲ 0.1 become unreliable. We emphasize
that without the contour deformation (4.6) the statistical power is indistinguishable from 0 for almost
all of the 𝜇 ≠ 0 ensembles shown.

We observe that the total system charge (Sec. 4.3.2) is less susceptible to statistical noise
which allows us to access it over all considered chemical potentials. In contrast the single particle
energy spectrum (Sec. 4.3.5) is more susceptible to the noise resulting in significant uncertainty
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at 𝛽 = 8 with 𝜇 = 0.9, 1. At 𝜇 = 1.1 more data is required to reliably estimate the larger energies.
Consequently, we remove this point from the analysis.

0.0 0.2 0.4 0.6 0.8 1.0
µ

10-1

100

|〈 Σ
〉 |

Nt = 32, β= 4

Nt = 64, β= 4

Nt = 96, β= 4

Nt = 32, β= 6

Nt = 64, β= 6

Nt = 96, β= 6

Nt = 32, β= 8

Nt = 64, β= 8

Nt = 96, β= 8

Figure 4.2: Statistical power |⟨Σ⟩| as a function of the chemical potential 𝜇. With the given amount
of configurations, beyond |⟨Σ⟩| ⪅ 0.1 simulations are unreliable.

4.3.2 Total System Charge

0.0 0.2 0.4 0.6 0.8 1.0
µ

0

2

4

6

8

10

〈 Q〉

0.2 0.3 0.4 0.5
0

1

2

Interacting:

Non-Interacting:

β= 4

β= 4

β= 6

β= 6

β= 8

β= 8

 

β→∞

Figure 4.3: Plot of the total system charge as a function of the chemical potential 𝜇.

In figure 4.3 we show the charge as a function of 𝜇. Solid lines are exact non-interacting𝑈 = 0
results, while the continuum-extrapolated (𝛿 → 0) total system charge measured with 𝑈 = 2 is
shown as points with uncertainties. As shown in appendix 4.A.7 our data is close to the continuum
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limit and we simply fit a constant to the charge at all three Nt values.
Focusing on the non-interacting result, colored lines are at the simulated 𝛽 while the black

line represents the zero-temperature limit. For the latter we observe a sudden jump of Δ𝑄 = 2
at 𝜇 ≈ 0.347 which corresponds to the smallest single particle energy Δ𝐸

𝐵3
3

𝑈=0(𝜇 = 0); the jump
corresponds to two electrons moving out of the Fermi sea. The difference in charge must be a
multiple of two due to the spin-degeneracy preserved in the Hubbard model. In the non-interacting
case a further jump of Δ𝑄 = 8 appears at 𝜇 = 1 corresponding to the next (accidentally-quadruply-
degenerate) single particle energy. Corresponding single particle energies can be found in the first
panel of figure 4.8.

Finite temperature washes out the step function (4.9) and we draw colored solid lines for
each temperature we simulated. They cross the Δ𝑄 = 2 threshold necessarily at higher chemical
potentials due to finite temperature effects. Furthermore, at finite temperature 𝑄 ≠ 0 states are
partly populated and we can cross 𝑄 = 1 below the free zero-temperature single-particle threshold.

The circles, squares and triangles in figure 4.3 display the continuum limit of the charge at finite
temperature, 𝛽 = 4, 6, 8 respectively. The temperatures are too hot to identify a clear charge jump,
however, the 𝛽 = 6, 8 data go through 𝑄 = 1 between 𝜇 = 0.4 and 0.5, later than the free system.

Comparing the finite temperature interacting and non-interacting results shows a growing
deviation as we increase 𝜇. Already, for the first charge jump a significant change is deduced
suggesting a noticeable influence from the interactions. Furthermore, as we will see in section 4.3.5,
the 4-fold degeneracy around 𝐸 ∼ 1 splits, and we expect the jump of Δ𝑄 = 8 to break into jumps
of size Δ𝑄 = 2. A final assessment on the importance of the interaction in this molecule, however,
cannot be made, as only one non-physical, interaction value is considered.

Furthermore, since a typical level of doping is expected to be only a few elemental charges [98,
125], we argue that the NLO-plane HMC provides an acceptable signal at values of 𝜇 in the relevant
range for perylene.

4.3.3 Extracting Energies

Each ensemble, fixed by a choice for Nt, 𝛽, and 𝜇, results in 20 correlators; a total of 1980 correlators
need to be analyzed. Using the fitting routine described in Appendix 4.A, we perform about 30
to 100 fits (depending on the fit intervals and the minimum of the correlator) with either two or
three exponential terms in the model for the central value and for each of the Nbst bootstrap samples.
With Nbst = 500 this results in O

(
108) fits. This sheer number emphasizes that an automatic

fitting procedure with well formulated criteria is needed. In this section we discuss a selection of
correlators and how their corresponding energies are extracted. We focus in particular on the finest
lattice spacing (Nt = 96) and the lowest temperature (𝛽 = 8).

As discussed in Appendix 4.A.3 the single particle spectrum contains positive and negative
energies and the spectral decomposition can be split into increasing and decreasing exponentials.
This motivates the fit model

𝐶Λ𝑖 (𝜏) = 𝑧𝐿0 𝑒
−𝐸𝐿0 𝜏 + 𝑧𝑅0 𝑒

𝐸𝑅0 (𝜏−𝛽) +
𝑁𝐿∑︁
𝑛>0

𝑧𝐿𝑛 𝑒
−(Δ𝐸𝐿𝑛 +𝐸𝐿𝑛−1)𝜏 +

𝑁𝑅∑︁
𝑛>0

𝑧𝑅𝑛 𝑒
(Δ𝐸𝑅𝑛 +𝐸𝑅𝑛−1) (𝜏−𝛽) (4.12)

where the 𝐿 and 𝑅 labels indicate whether the contribution is large at small or large 𝜏 and we have
dropped the state label on the fit parameters. Notice that the parameters 𝐸𝐿/𝑅𝑛 and the respective
splittings Δ𝐸𝐿/𝑅𝑛 = 𝐸

𝐿/𝑅
𝑛 − 𝐸𝐿/𝑅

𝑛−1 are positive. Thus accessing the desired energy requires us to
identify the dominant contribution and assign

𝐸
Λ𝑖
𝑈=2 = 𝐸𝐿0 or − 𝐸𝑅0 . (4.13)

For more details please refer to appendix 4.A.5.
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Figure 4.4a: Correlators corresponding to states
𝐵3

3 & 𝐵3
1, orange and blue respectively. These are

estimated at Nt = 96, 𝛽 = 8, 𝑈 = 2, 𝜇 = 0 and
correspond to the smallest, in magnitude, energy of
the system. Uncertainties are less then 1% making
them hard to spot.
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(1, 2) States [2,89]: AIC=-131.05

(1, 2) States [2,90]: AIC=-130.641

(1, 2) States [2,88]: AIC=-129.71

(1, 2) States [2,87]: AIC=-127.905

(1, 2) States [2,91]: AIC=-126.127

Figure 4.4b: Best 𝐵3
3 fits. The data points are the

same as in figure 4.4a. For each fit, two confidence
bands are plotted corresponding to one and two
𝜎. These best fits are performed according to the
model (4.12) with (𝑁𝐿 = 1, 𝑁𝑅 = 2). No 𝑁𝑅 = 1 fit
is in the best five. The fit range is indicated in the
square brackets expressing values of 𝜏/𝛿 comprising
almost the entire correlator.

𝜇 = 0

The smallest energy, in magnitude, is most interesting as it moves across zero for finite chemical
potential first, indicating the previously discussed charge jump. These energies come from the state
𝐵3

3 (negative energy) and 𝐵3
1 (positive energy).

The 𝐵3
3 and 𝐵3

1 correlators at 𝜇 = 0 are displayed in figure 4.4a. The uncertainties at each time
point are less then 1% which results from relatively high statistics 𝜎 ∼ O(1/√10000) and the fact
that its decay is relatively mild. Especially for larger energy correlators we find a signal-to-noise
problem around the minimal point. As the energies of the 𝐵3

3 and 𝐵3
1 correlators differ only in sign,

we find them equal up to time reversal. Furthermore, on a log scale they appear extremely straight
for a large range of euclidean time 𝜏 indicating little excited state contamination.

In figure 4.4b the 5 best fits are plotted on top of the correlator. The data points represent the
correlator, the solid lines are the fits colour-coded as indicated in the legend, and the bands indicate
the one- and two-𝜎 confidence interval on the fit. All these fits have two exponentials on the right
while the left side has one exponential. We also performed fits with only one exponential on the
right but none are among the 5 best fits shown here. Visually all these fits are extremely close to the
data points; quantitatively the 𝜒2/dof ∼ 1 as desired for good fits. Appendix 4.A.6 explains how we
model average fits. Furthermore, the best fit resulting over a fitting range of 𝜏/𝛿 ∈ [2, 89] with
𝜒2/dof = 0.53. Its result is displayed in table 4.1. From here we see that excited states are clearly
distinguished providing additional evidence for a reliable estimate.

𝐸𝐿0 = 1.749(63) 𝑧𝐿0 = 0.04277(84)
𝐸𝑅0 = 0.3228(93) 𝑧𝑅0 = 0.590(56)
Δ𝐸𝑅1 = 0.270(29) 𝑧𝑅1 = 0.290(55).

Table 4.1: Best fit results of the 𝐵3
3 correlator displayed in figure 4.4b. Uncertainties are determined

through bootstrap while central values come from a fit to the central values of the data.

We can further assess the stability of the fitting procedure by considering the overview plots in
figure 4.5. The main body for each figure shows the value of the fit parameter as a function of the
model probability given the data [126, 127, 128]

𝑝(𝑚 |𝐷) ∼ 𝑒− 1
2 AIC, (4.14)
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where AIC is the Akaike information criterion, as explained in Appendix 4.A.6. A model 𝑚 is
defined by the number of exponentials (𝑁𝐿 , 𝑁𝑅) in the fit function (4.12) and the range of euclidean
time it is evaluated on. In figure 4.5 the (1, 1) and (1, 2) state fits are plotted as circles and pluses,
respectively. These points represent the central value fit, uncertainties are not drawn. We find the
correlator to be predominantly increasing, resulting in the choice of varying 𝑁𝑅 and identifying
the lowest energy to be negative. We highlight the 𝑝(𝑚 |𝐷)-weighted (model) average, (4.32), of
each parameter with a solid line and the uncertainty as a band. This uncertainty is obtained by the
standard deviation of the model average over all bootstrap samples. For the 𝐸𝑅0 the absolute value
of the non-interacting energy is added as a grey dashed line to provide a reference. Attached to
the ordinate and abscissa are the counts of the parameters and model weights (histograms). They
visualize the distribution of the fit results. The total number of fits done is indicated in the lower
right corner. This number is naturally smaller for the parameters only appearing in the two state fits.

Overall, we find great stability in these fits, as evidenced by the string of points converging
towards larger weights. The two bands in all figures originate from the two allowed fit interval
starting points at 𝜏/𝛿 = 1, 2 for the fits. As the AIC penalizes additional parameters, we find
significant support for the (1, 2) state fits; their respective mode is strongly correlated with the mode
of the weights. The fact that the best fits almost span over the entire abscissa strengthens this even
further.

Finally, this fitting procedure results in the model averaged energy

𝐸
𝐵3

3
𝑈=2 (Nt = 96, 𝛽 = 8 | 𝜇 = 0) = −0.3230(64). (4.15)

Transition of the Smallest Energy at 𝜇 ≠ 0

The interacting energies change with 𝜇, and sometimes a state’s energy changes sign. This
happens, for instance, between 𝜇 = 0.4 and 0.5, where the 𝐵3

3 state’s energy crosses 0. To illustrate
the effect of the chemical potential on the correlator, figure 4.6a again shows the two states 𝐵3

3
and 𝐵3

1; between 𝜇 = 0.4 (the upper panel) and 𝜇 = 0.5 (lower panel) the 𝐵3
3 correlator goes

from predominantly decreasing to predominantly increasing, indicating an energy crossing 0.
Even at these chemical potentials we find a great resolution accounting for a statistical power of
|⟨Σ⟩| = 0.6228(46), 0.4707(59) at 𝜇 = 0.4, 0.5 respectively. We emphasize that without alleviating
the sign problem with a contour deformation these correlators are overwhelmed by noise and no
results can be extracted.

In figure 4.6b, similar plots for the 5 best fits to the 𝐵3
3 correlator are shown. As in figure 4.6a,

the upper panel shows 𝜇 = 0.4, while the lower panel shows 𝜇 = 0.5. The best of these fits have
𝜒2/dof = 0.11, 0.075. The overview plots exhibit the same nice features as in the 𝜇 = 0 case and we
omit them for concision.

For these two fits we find model average energies,

𝐸
𝐵3

3
𝑈=2 (Nt = 96, 𝛽 = 8 | 𝜇 = 0.4) = −0.0480(37), (4.16)

𝐸
𝐵3

3
𝑈=2 (Nt = 96, 𝛽 = 8 | 𝜇 = 0.5) = +0.0427(73). (4.17)

4.3.4 Continuum Limit

To remove the systematic errors introduced by discretizing the thermal trace we must perform a
continuum limit 𝛿→ 0. Given our data, at each 𝛽 we can fit a constant, as shown for the 𝐵3

3 state
in figure 4.7. The inverse temperature 𝛽 increases across the columns and the chemical potential
increases down the rows. In each row the ordinate maintains the same scale to provide a rough idea
of the 𝛽 dependence. A triangle at 𝛿 = 0 indicates the continuum value; a corresponding solid line
is put to guide the eye toward larger 𝛿.

The legend gives the 𝜒2/dof for the constant fit. All states give values between 𝜒2/dof = 3.5×10−4

and 0.8. Overall, the residuals are significantly smaller than one would expect for an ideal fit

56



10-66 10-57 10-48 10-39 10-30 10-21 10-12 10-3

p(m|D)

1.0

1.2

1.4

1.6

1.8

2.0

E
L 0

88 Fits

0 10

0

15

(1, 1) States

(1, 2) States

Model Average: 1.752(54)

10-66 10-57 10-48 10-39 10-30 10-21 10-12 10-3

p(m|D)

0.040

0.041

0.042

0.043

0.044

0.045

z
L 0

88 Fits

0 20

0

15

(1, 1) States

(1, 2) States

Model Average: 0.04283(57)

10-66 10-57 10-48 10-39 10-30 10-21 10-12 10-3

p(m|D)

0.32

0.33

0.34

0.35

0.36

0.37

E
R 0

88 Fits

0 10

0

15

(1, 1) States

(1, 2) States

Model Average: 0.3230(64)

|εB 3
3
|: 0.3473

10-66 10-57 10-48 10-39 10-30 10-21 10-12 10-3

p(m|D)

0.55

0.60

0.65

0.70

0.75

0.80

0.85
z
R 0

88 Fits

0 8

0

15

(1, 1) States

(1, 2) States

Model Average: 0.592(33)

10-18 10-15 10-12 10-9 10-6 10-3 100

p(m|D)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

∆
E
R 1

44 Fits

0 8

0

10

(1, 2) States

Model Average: 0.272(12)

10-18 10-15 10-12 10-9 10-6 10-3 100

p(m|D)

0.15

0.20

0.25

0.30

z
R 1

44 Fits

0 8

0

10

(1, 1) States

(1, 2) States

Model Average: 0.288(33)

Figure 4.5: Fit overview plots for a fit to the 𝐵3
3 correlator at Nt = 96, 𝛽 = 8, 𝑈 = 2, 𝜇 = 0. A

subfigure is dedicated for each parameter in the fit model (4.12) as a function of the model weight
𝑝(𝑚 |𝐷) ∼ exp(−1/2AIC). One-state fits, (𝑁𝐿 = 1, 𝑁𝑅 = 1), are indicated with circles, while
two-state fits, (𝑁𝐿 = 1, 𝑁𝑅 = 2), are plotted with pluses. The model average is indicated through
a solid line with adjacent uncertainty determined by the standard deviation of the model average
on each bootstrap sample. Attached to the axes are counts of the fit results (unweighted) and the
model weights. The correlation of the mode of the fit results with the mode of the weights indicate
the support for the two-state fits. Uncertainties are only displayed on the counts, computed by
bootstrapping the heights on fixed bin widths. Fits with AIC > 200 are not shown. Finally the total
number of fits is shown in the lower right corner, with less fits for parameters only available in the
two state fits.
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Figure 4.6a: Correlators corresponding to states 𝐵3
3

(orange) and 𝐵3
1 (blue) estimated with Nt = 96, 𝛽 =

8, 𝑈 = 2. While figure 4.4a shows 𝜇 = 0, the upper
panel shows 𝜇 = 0.4 and the lower panel 𝜇 = 0.5.
The transition of the smallest negative energy to
a positive energy happens in between these two
values. The trend of both correlators is toward a more
negative slope with increasing chemical potential, as
expected given our sign convention for 𝜇.
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Figure 4.6b: Best 𝐵3
3 Fits. The data points are the

same as in figure 4.6a, at again 𝜇 = 0.4 (upper) and
𝜇 = 0.5 (lower). Similarly, each fit is plotted as a
solid line with two confidence bands corresponding
to one and two 𝜎. Further, the best fits are again with
two states (𝑁𝐿 = 1, 𝑁𝑅 = 2) and (𝑁𝐿 = 2, 𝑁𝑅 = 1)
respectively. The fit range is indicated in the square
brackets expressing values of 𝜏/𝛿 comprising almost
the entire correlator. The transition from negative to
positive energy can be seen better on this scale.
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𝜒2/dof ≈ 1. In particular the very small 𝜒2-values are governed by the increased uncertainties at
larger chemical potentials. At this point we want to emphasize that the purely statistical uncertainties
on the best fits are significantly smaller. However, due to the bootstrap over model averages we
include systematics, from the choice of fit model, in the uncertainties. This conservative error
estimation allows us to be very confident about the correctness of our results within the provided
uncertainty range.

We find that all ensemble’s extrapolations are extremely flat, showing little dependence on the
lattice spacing at the chosen parameters. Linear contributions are not well-supported by the data,
see Appendix 4.A.7 for a thorough discussion. We discard the spectrum at 𝜇 = 1.1 as the noise is
too large to extract the higher energies for 𝛽 = 8 reliably without additional samples.

4.3.5 Spectrum

We can now collect all continuum energies and plot them as a function of chemical potential. We
present this result in two ways, first with the barcode plot in figure 4.8 that provides an overview on
how the spectrum behaves as function of 𝜇. Each panel in this figure details 20 single-particle states
in 𝛽 = 8 spectrum at fixed chemical potential. The first two panels offer a comparison between
non-interacting and interacting spectra at 𝜇 = 0; each shows the expected symmetric spectrum,
providing a check on the analysis. While the small energies are very close and the ends of the
spectra differ more meaningfully, we can see that the interactions split the accidental quadruplets of
states at 𝐸 = ±1. Lower panels have increasing chemical potential and the energies grow with 𝜇
as expected. In particular, the least negative state 𝐵3

3 moves closer and closer to zero, changing
sign after 𝜇 = 0.4 as expected from the ⟨𝑄⟩ = 1 crossing in figure 4.3. Up to 𝜇 = 0.8 the signal is
good to resolve all energies with great precision. Starting at 𝜇 = 0.9 the sign problem becomes
prevalent, providing statistical powers smaller than |⟨Σ⟩| ≤ 0.1547(75) resulting in significantly
larger uncertainties. To map out the second big transition, expected after 𝜇 = 1 from figure 4.3,
more statistics are required. Appendix 4.B details the same plots for 𝛽 = 4, 6 obeying a similar
behaviour.

Second, figure 4.9 details the 𝜇 dependence for each state’s energy, which makes it easier
to compare to the non-interacting finite-𝜇 result. In each panel the solid black line represents
the non-interacting result, while the data points display the interacting result. For most states
a significant divergence from the non-interacting result can be seen. As the chemical potential
increases the behaviour of a given state is expected to change as the ground state changes. Indeed
we observe slightly different slopes for all states after 𝜇 = 0.4. This is more pronounced at larger 𝛽
pointing towards a non-trivial zero temperature limit. Finally, the energy levels at 𝛽 = 8 are detailed
in table 4.2.
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Figure 4.7: Continuum limit of the 𝐵3
3 as a function of chemical potential (top to bottom) for the

three available temperatures left to right. The scale of the ordinate is kept to provide a feeling on
the 𝛽 dependence. The title of each subplot shows the validity via a 𝜒2/dof. As these are just fits to a
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Figure 4.8: Spectrum plot at 𝛽 = 8 shows the single particle spectrum as a function of chemical
potential. The first panel indicates the non-interacting result at 𝜇 = 0, all subsequent panels are at
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figure 4.3. A second transition is not resolved at available statistics.
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Figure 4.9: Single particle energy overview as a function of chemical potential at 𝛽 = 8. Each panel
shows the energy of a particular state. The non-interacting energy is provided as a solid black line
while the data points are at 𝑈 = 2. Difference to the non-interacting energy is more pronounced
towards larger chemical potentials.

𝜇 𝐴0 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐵0
1 𝐵1

1 𝐵2
1 𝐵3

1

0 -2.337(36) 2.038(16) -1.529(12) 0.9917(85) 0.951(12) -0.9696(92) -1.763(20) 1.476(14) -0.938(16) 0.3477(68)
0.1 -2.253(37) 2.112(19) -1.463(13) 1.061(12) 1.046(11) -0.8969(50) -1.689(18) 1.547(19) -0.869(12) 0.4090(86)
0.2 -2.197(38) 2.176(25) -1.373(11) 1.127(21) 1.092(19) -0.8010(69) -1.611(20) 1.596(29) -0.8041(92) 0.445(13)
0.3 -2.102(35) 2.218(31) -1.289(23) 1.205(25) 1.143(23) -0.7123(75) -1.551(14) 1.669(31) -0.712(11) 0.484(15)
0.4 -1.992(63) 2.276(41) -1.160(39) 1.273(24) 1.152(45) -0.6201(94) -1.400(43) 1.680(38) -0.6515(59) 0.546(13)
0.5 -1.872(73) 2.388(40) -1.097(43) 1.320(30) 1.224(69) -0.5555(82) -1.383(24) 1.711(54) -0.5635(99) 0.621(13)
0.6 -1.84(13) 2.344(73) -1.025(46) 1.396(38) 1.17(11) -0.4762(78) -1.301(51) 1.785(98) -0.4848(96) 0.711(13)
0.7 -1.61(15) 2.20(15) -0.951(44) 1.449(30) 1.377(41) -0.398(12) -1.298(55) 1.737(93) -0.409(13) 0.772(33)
0.8 -1.42(25) 2.50(12) -0.903(42) 1.395(87) 1.410(87) -0.323(12) -1.137(56) 1.65(17) -0.341(46) 0.864(22)
0.9 -1.69(12) 2.687(76) -0.76(24) 1.52(11) 1.35(16) -0.236(39) -0.78(30) 1.52(27) -0.28(19) 0.917(56)
1 -1.23(32) 2.60(83) -0.70(12) 1.32(35) 1.46(20) -0.2(1.2) -0.88(23) 1.75(25) -0.21(62) 0.97(10)

𝐵0
2 𝐵1

2 𝐵2
2 𝐵3

2 𝐵4
2 𝐵5

2 𝐵0
3 𝐵1

3 𝐵2
3 𝐵3

3

0 2.350(28) -2.037(18) 1.530(12) 0.9758(77) -0.9870(96) -0.949(12) 1.766(18) -1.467(17) 0.949(13) -0.3376(74)
0.1 2.438(34) -1.946(18) 1.606(20) 1.0622(78) -0.9099(44) -0.859(14) 1.848(17) -1.392(16) 1.005(17) -0.2757(50)
0.2 2.496(35) -1.819(26) 1.655(22) 1.134(12) -0.8163(65) -0.8027(72) 1.873(32) -1.297(21) 1.025(33) -0.2057(30)
0.3 2.563(47) -1.714(55) 1.691(28) 1.219(15) -0.7259(76) -0.7061(85) 1.953(26) -1.233(18) 1.070(37) -0.1180(44)
0.4 2.658(87) -1.599(99) 1.700(42) 1.277(35) -0.6455(53) -0.6311(86) 1.997(30) -1.121(25) 1.157(41) -0.0472(72)
0.5 2.737(56) -1.561(53) 1.753(51) 1.311(30) -0.5514(59) -0.5643(83) 2.025(46) -1.099(17) 1.218(57) 0.048(50)
0.6 2.84(13) -1.45(15) 1.740(71) 1.32(11) -0.4763(68) -0.477(11) 2.092(56) -0.917(70) 1.254(81) 0.099(22)
0.7 2.75(14) -1.25(12) 1.651(96) 1.386(67) -0.380(10) -0.417(10) 1.99(11) -0.906(55) 1.289(69) 0.172(18)
0.8 3.05(15) -1.18(21) 1.79(13) 1.415(81) -0.311(19) -0.346(18) 2.03(12) -0.844(29) 1.29(10) 0.240(12)
0.9 3.05(17) -1.05(19) 1.90(13) 1.34(21) -0.26(84) -0.27(49) 1.52(29) -0.75(15) 1.24(17) 0.305(39)
1 3.15(59) -0.71(36) 1.87(30) 1.55(17) -0.2(1.6) -0.16(50) 1.98(46) -0.692(88) 1.51(12) 0.38(19)

Table 4.2: Values of the energy levels at 𝛽 = 8. These numbers correspond to the squares or points
displayed in 4.8 and 4.9 respectively.
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4.4 Conclusions

In this work we have performed an initial Monte Carlo study of the electronic structure of a single
doped perylene C20H12 molecule described with the Hubbard model. We treated discretization errors
by simulating at three discretizations and performing a continuum limit extrapolation. The effect of
temperature is studied qualitatively at three values. Central to this study is the scan over chemical
potential starting at half filling (𝜇 = 0), including the first doping transition (0.4 < 𝜇 < 0.5),
and stretching further out to 𝜇 = 1.1. We quantify the doping by calculating the total system
charge, providing evidence for the position of the transition. We map out the low single particle
energy spectrum at each chemical potential, backing the transition with a negative energy state
moving out of the Fermi sea. Throughout all results, we find significant divergence from the
non-interacting model. In particular, the point of transition moves to larger chemical potentials
and an additional splitting of accidentally degenerate energy states emerges. For technological
applications to perylene-derived molecules we can easily leverage a more accurate interaction. We
also plan to compute charge-neutral excitations, responses to external electromagnetic sources, and
to carefully study the cold regime.
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4.A Analysis Details

In this appendix we describe in detail each step of the analysis.

4.A.1 Reweighting

When dealing with systems obeying a complex valued action a way to utilize Monte Carlo integration
is reweighting. For this, the Markov Chain is generated by sampling according to the Boltzmann
distribution originating from the real part of the action effectively treating the complex phase
𝑒− i Im{𝑆} as part of the observable. In order to generate the intended observables the relation

⟨O⟩ =

〈
O𝑒− i Im{𝑆}〉

Re{𝑆}〈
𝑒− i Im{𝑆}

〉
Re{𝑆}

. (4.18)

has to be evaluated. Under a bootstrap analysis each resample is evaluated in this way maintaining
the correlations and fluctuations of the observables with the phase.

4.A.2 Autocorrelation

When estimating statistical uncertainty of observables, especially with bootstrap based analysis, the
observables need to be statistically independent between configurations. This naively is not the case
for Markov Chain algorithms. Yet, we can ensure statistical independence by various means for
example by striding – only measuring on every nth trajectory with n big enough. A post-processing
option is to evaluate the autocorrelation function

ΓO (𝜈) ∝
Ncfg−𝜈∑︁
𝑛=0
(O [Φ𝑛+𝜈] − ⟨O⟩) (O [Φ𝑛] − ⟨O⟩)∗ (4.19)

normalized by ΓO (0), and estimating the integrated autocorrelation time [129, 130],

𝜏Oint =
1
2
+
𝑀∑︁
𝜈=1

ΓO (𝜈). (4.20)

One can find the cut-off 𝑀 ≪ Ncfg by searching for the smallest number such that 𝑀 ≤ 10 ·𝜏Oint [129].
For the analysis discussed here we measure on every 10th trajectory and subsequently identify

the largest autocorrelation time over all our considered observables (the set of correlators Csp
𝑥,𝑦 (𝜏)).

To ensure no observable is autocorrelated, we use this largest integrated autocorrelation as a stride
between measurements resulting in Nindep

cfg = Ncfg/2 maxO {𝜏Oint} independent samples1. We find that
most of the time 𝜏Oint ≈ 0.5. In exceptional cases, we find 𝜏Oint ≈ 1.

4.A.3 Spectral Decomposition

By inserting complete sets of Hamiltonian eigenstates into the thermal trace defining the single-
particle (and -hole) correlators (4.7) we find the spectral decomposition

Csp
𝑥𝑦 (𝜏) =

1
Z

∑︁
𝛼𝑛

𝑧𝛼𝑥𝑛𝑧
∗
𝛼𝑦𝑛𝑒

−𝐸𝑛𝜏𝑒−𝐸𝛼 (𝛽−𝜏 ) , (4.21)

Z =
∑︁
𝑛

𝑒−𝐸𝑛𝛽 (4.22)

1For convenience, we denote the number of independent samples simply by Ncfg from here on.
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Figure 4.10: Single-particle eigenoperators
∑
𝑥 𝑐
∗
𝑥 𝑝
†
𝑥 of the perylene tight-binding Hamiltonian.

The circle on each site is scaled according to |𝑐 |, the absolute value of operator’s amplitude there, and
colored according to its sign (dark blue is positive, light red is negative). Each row is an irreducible
representation, each irrep is sorted by the non-interacting tight-binding energy eigenvalue 𝜖 labelling
the operators. In the lower-right we show the 𝐷2 product table.

where we define the overlap factors

𝑧𝛼𝑥𝑛 = ⟨𝛼 |𝑝𝑥 |𝑛⟩ (4.23)

and 𝛼 and 𝑛 label many-body energy eigenstates that differ by the quantum numbers of a single
particle.

In the large-𝛽 limit the spectral decomposition simplifies to

Csp
𝑥𝑦 (𝜏) =

∑︁
𝑛

𝑧Ω𝑥𝑛𝑧
∗
Ω𝑦𝑛𝑒

−(𝐸𝑛−𝐸Ω )𝜏 (4.24)

with |Ω⟩ the many-body ground state (if multiple states are degenerate, the decomposition is the
obvious sum). By analyzing the spectral decomposition we can find energy differences from the
ground state; at finite chemical potential 𝜇 ≠ 0 the eigenvalues 𝐸 are of 𝐻 − 𝜇𝑄.

4.A.4 Diagonalizing Correlators

An analogue of CPT symmetry allows us to average the single-particle and the time-reversed
single-hole correlators; this helps us increase statistics and reduce the amount of required analysis,
and we henceforth drop the single-particle superscript on 𝐶.

The point symmetry group of perylene is typically identified as 𝐷2ℎ. Our Hamiltonian, however,
treats the ions as fixed, and we can split the symmetry into the dihedral group 𝐷2 and a Z2 whose
only action is to flip spin components; we already average over particles and holes leveraging
the equivalent of CPT, so this Z2 is accounted for. The 𝐷2 symmetry can be understood as a
combination of reflections across the two principle axes; the 𝐴 irrep is even under both reflections,
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the 𝐵1 irrep is odd under top-to-bottom reflections and odd under left-to-right reflections, 𝐵2 is
even/odd, and 𝐵3 is odd/even.

We can perform a basis transformation on the correlation functions (4.7) to compute correlators
of

∑
𝑥 𝑐
∗
𝑥 𝑝
†
𝑥 with the amplitudes 𝑐 defined on every site. The vector space defined on the 20 sites can

be decomposed into invariant subspaces on which the action of the 𝐷2 symmetries act irreducibly as
𝐴, 𝐵1, 𝐵2, and 𝐵3; in a slight but common abuse of language we identify these invariant subspaces
as the irreps themselves. The irreps are all one-dimensional and have multiplicity 6, 4, 6, and 4,
respectively. Fig. 4.10 shows an orthonormal basis of operators for each irrep, chosen to diagonalize
the tight-binding (𝑈 = 0) problem.

We can divide the ions of the lattice in A and B sublattices such that neighbours are always in
the different sublattice. If we multiply all the fermion operators on a single sublattice by −1, the
tight-binding Hamiltonian flips, because every possible hopping picks up exactly one sign, and we
see that the tight-binding spectrum is symmetric around zero.

However, this sublattice symmetry does not commute with the 𝐷2 point group, so the operators
with opposite tight-binding energies (related by staggering the amplitudes’ signs on one sublattice)
appear in different irreps; this is particularly clear in Fig. 4.10 for the 𝐵1 and 𝐵3 irreps which
have no accidental degeneracies. Another good example is the highest-energy 𝐴 operator (with
uniformly-signed amplitudes) and the lowest-energy 𝐵2 operator (with corresponding staggered
amplitudes). The ion-independent Hubbard interaction does not break the 𝐷2 symmetry.

We can use the amplitudes 𝑐 to construct a unitary matrix that block-diagonalizes the correlator
𝐶,

𝐶Λ′
𝑖
,Λ
𝑗
(𝜏) =

∑︁
𝑥𝑦

𝑈Λ′
𝑖
,𝑥𝐶𝑥𝑦 (𝜏) (𝑈†)𝑦,Λ

𝑗
= 𝐶Λ

𝑖 𝑗 (𝜏)𝛿Λ′Λ (4.25)

where Λ and Λ′ label the 𝐷2 irreps and 𝑖 and 𝑗 operators of the respective irrep. Because our
Hamiltonian has 𝐷2 symmetry the irrep is conserved and the transformed correlator is block
diagonal, as shown in the second equality (4.25). Each block 𝐶Λ(𝜏) has a spectral decomposition
(4.24) which sums over only states 𝑛 that differ from the ground state by irrep Λ; put another way in
the full spectral decomposition (4.21) the 𝐷2 Wigner-Eckhart theorem states that 𝛼 = Λ ⊗ 𝑛 using
the 𝐷2 product table in Fig. 4.10 where 𝛼 and 𝑛 are the irreps of their respective states.

When the interaction is weak, the single-particle correlation function transformed into this basis
is nearly diagonal because the basis diagonalizes the tight-binding problem; when the interaction is
strong, it remains block diagonal in irrep but within an irrep the operators can mix. Because every
off-diagonal entry has differing contributions from excited states, no single unitary transformation
diagonalizes an irreducible block for every time 𝜏. We can nevertheless diagonalize each time slice
independently.

Many diagonalization routines sort eigenvalues, which can lead to misidentifying the time
dependence when correlators cross and cause trouble under a bootstrap analysis. A variety of sorting
methods that can help to avoid this misidentification are discussed in Ref. [131]. To maintain the
ordering of states and avoid said ambiguity, we diagonalize using a Jacobi method based on Givens
rotation: the largest off-diagonal elements are iteratively rotated into the diagonal. By tracking these
rotations we can also find the linear combination of operators that yield a diagonalized time slice.

However, this tracking procedures fail when correlators within an irrep cross; if we diagonalize
timeslice-by-timeslice the crossings have level repulsion and introduce unphysical discontinuities
in the resulting correlators. These crossings frequently appear, rendering a perfect timeslice-by-
timeslice diagonalization inaccessible. This numerical problem stems from using only the 20 single
particle operators, which do not constitute a complete basis of the spin-half 𝑄 = 1 sector. For
example, we do not include in our calculation operators which have the same quantum numbers as
our single-particle interpolators, like 𝑝†ℎ†ℎ. Interacting eigenstates mix 𝑝† with all such operators,
but our irreducible blocks are truncated to only the single-particle interpolators. If we would
measure a much bigger correlator built from a complete basis of the single-particle sector the
timeslice-by-timeslice diagonalization would produce perfect correlators with no repulsion.
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Rather than grapple with these discontinuities, we instead adopt a variational approach. Given
𝑁𝑡 unitaries𝑈𝑡 , one for each timeslice, we select the one that best diagonalizes all other time slices,

𝜏 = min
𝑡≠𝑡 ′




𝑈†𝑡 ·𝑈𝑡 ′ − 1


, (4.26)

and use it to approximately diagonalize the blocks. This unitary can be thought of as variationally
selecting a linear combination of the tight-binding eigenoperators shown in figure 4.10. From these
mostly-diagonalized blocks we simply take the diagonal elements, resulting in a set of 20 correlators
𝐶Λ𝑖 (𝜏) where Λ labels an irrep and 𝑖 is just an index. From these variationally-diagonalized
correlators we are ultimately interested in the lowest energy—or more precisely, the energy closest
to zero—in the spectral decomposition (4.24).

4.A.5 Fitting Energies

In order to systematically reduce the effect of excited states, we can fit correlators to a truncated
spectral decomposition. The fit program proceeds with three steps; First, decide on a fit model,
including number of states – terms in (4.24) – and fit range as well as identify prior-knowledge;
second perform a Bayesian fit; and last measure how well the fit did.

As mentioned before the spectrum contains positive and negative energies. Therefore, the
spectral decomposition can be split into two contributions, decaying (𝑧𝐿𝑛 , 𝐸𝐿𝑛 ) and increasing
exponentials (𝑧𝑅𝑛 , 𝐸𝑅𝑛 ), suppressing the state label Λ𝑖 for clarity. To further stabilize the fit and
ensuring that 𝐸𝐿/𝑅0 is the smallest energy, the model is recast with relative energy differences
𝐸
𝑅/𝐿
𝑛 → Δ𝐸

𝑅/𝐿
𝑛 such that Δ𝐸𝐿/𝑅𝑛 = 𝐸

𝐿/𝑅
𝑛 − 𝐸𝐿/𝑅

𝑛−1 > 0 resulting in the fit model (4.12). With this
fit model, and the variational basis constructed in the previous section, we can identify the energy
gap and overlap by

𝐸
Λ𝑖 = 𝐸𝐿0 or − 𝐸𝑅0 , (4.27)��𝑧ΩΛ𝑖 ��2 = 𝑧𝐿0 or 𝑧𝑅0 . (4.28)

If the correlator 𝐶Λ𝑖 (𝜏) is primarily decaying take 𝑧𝐿0 , 𝐸
𝐿
0 otherwise 𝑧𝑅0 , 𝐸

𝑅
0 . This choice is

made based on the fact that the slowest decay/increase of the correlator comes from the lowest
energy, consequently we treat the other as excited state contamination. We truncate the spectral
decomposition (4.12) after Nstates = 1, 2 on the longer part of the correlator and keep Nstates = 1 on
the shorter end.

The contribution from excited states is different from time slice to time slice. Thus, it is advisable
to include different fit intervals 𝜏 ∈ 𝛿[𝜏start, 𝜏end]. These are chosen by identifying the minimal point
of the correlator, 𝜏min = min

𝜏
(
��𝐶Λ𝑖 (𝜏)

��) and taking all possible combinations of 𝜏start < 𝜏min < 𝜏end.
For many correlators, the center part is relatively flat due to overlaps of exponentials causing
artificially small energies 𝐸𝐿/𝑅0 . To prevent this behaviour, the space of fit intervals is truncated
to always take at least 75% of the subintervals to the left and right, i.e. 𝜏start < 0.75 · (𝜏min − 1),
0.75 · (Nt − 1 − 𝜏min) < 𝜏end.

The last ingredients are the priors to the fit. As discussed previously, the non-interacting energy
spectrum can be accessed analytically through 𝜖Λ𝑖 . Though we expect divergence from this, it at
least provides a good order of magnitude of the energies of the interacting simulations. Therefore,
we use this information in combination with a log-normal prior for the 1-state fits,

𝐸
𝐿/𝑅
0 ∼ logN

(���𝐸Λ𝑖
𝑈=0(𝜇)

���, ���𝐸Λ𝑖
𝑈=0(𝜇)

���) (4.29)

In case a zero crossing is expected (𝐸Λ𝑖
𝑈=0(𝜇) = 0), we simply use a gaussian prior with mean 0 and

standard deviation 10. Considering the form of the correlator, especially its magnitudes at the end,
we expect that the overlaps are O(1). This is encoded with a gaussian-prior with mean and standard
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deviation equal 1. The variationally-diagonalized correlators are positive-definite, so too large a
standard deviation would allow unphysical results.

For two-state fits the priors are partially determined by the one-state fit results we have already
obtained. We utilize the model average, discussed in the next section 4.A.6. The central value serves
as a mean to the (log-)gaussian prior while the standard deviation is determined by the maximum of
5𝜎 and 10% of the central value, giving the fitter enough freedom to adjust the fit result. For the
first two-state fit two additional parameter 𝑧𝐿/𝑅1 ,Δ𝐸

𝐿/𝑅
1 , that can not be obtained from the one state

fit results, are using a flat prior.
This fitting procedure is done on the central values of the correlator to provide central values for

the energies. Furthermore, it is performed on each bootstrap sample to provide uncertainties on the
energies. The fits are done in an uncorrelated manner, as the correlation is being tracked through
the bootstraps.

4.A.6 Model Averaging

This procedure results in a high number of fits obtained using lsqfit [132]. For each, we compute
the Akaike information criterion [126, 127, 128]

AIC = 𝜒2 + 2Nparams − 2 |𝜏𝑒 − 𝜏𝑠 | , (4.30)

This measure penalizes the number of parameters and smaller fit range which is exactly what we are
varying. A thorough discussion on this criterion in comparison to others can be found in Ref. [127].
With that we weight each fit result by the associated probability

𝑃 (model|data) ∝ 𝑒− 1
2 AIC. (4.31)

to obtain the final parameter value
〈
𝑝𝑛

〉
, 𝑝𝑖𝑛 ∈ {𝑧

𝐿/𝑅
𝑛 , 𝐸

𝐿/𝑅
𝑛 }Nstates−1

𝑛=0 where 𝑖 labels the different
results,

⟨𝑝𝑛⟩ =
∑
𝑖 𝑒
− 1

2 AIC𝑖 𝑝𝑖𝑛∑
𝑖 𝑒
− 1

2 AIC𝑖
. (4.32)

4.A.7 Continuum Limit

Once the charges and model averaged energies for a given set of parameters (Nt, 𝛽, 𝜇) are obtained
a continuum limit has to be performed, 𝛿 = 𝛽/Nt → 0. The temperatures considered are too high for
a reliable zero-temperature limit. We follow a similar approach as outlined in [25]. Expanding
the correlator (4.7) in a geometric sum and expanding in small 𝛿 suggests a polynomial in 𝛿. This
results in a expansion for the total charge, estimated from the 0th time slice,

⟨𝑄(𝛿, 𝛽)⟩ = 𝑄0(𝛽) +
𝐷∑︁
𝑑=1

𝛿𝑑𝑄𝑑 (𝛽) + O
(
𝛿𝐷

)
(4.33)

Usually, a control point is beneficial as otherwise priors can strongly bias fits of this form leaving us
with 𝐷 = 1 (2 parameters). Following the string of chemical potentials, the slopes𝑄1 are distributed
without a clear trend suggesting that discretization effects can be neglected – we are deep into the
scaling regime. Consequently, we perform the continuum limit with only the constant piece, 𝐷 = 0.
figure 4.11 provides an overview of the continuum limits for the total system charges discussed in
section 4.3.2. We find good fits across all systems, with some divergence on the coarsest lattices
(Nt = 32).

Developing this expansion into the spectral expansion of the correlator maintains this relation.

𝐸
Λ𝑖
0 (𝛿, 𝛽) = 𝐸

Λ𝑖
0 (𝛽) +

𝐷∑︁
𝑑=1

𝛿𝑑𝐸
Λ𝑖
𝑑
(𝛽) + O

(
𝛿𝐷

)
(4.34)
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Figure 4.11: Continuum limit for the total system charge 𝑄.
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𝜇 𝐴0 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐵0
1 𝐵1

1 𝐵2
1 𝐵3

1

0 -2.202(59) 1.861(49) -1.420(21) 0.945(10) 0.911(15) -0.910(15) -1.627(37) 1.348(28) -0.902(15) 0.338(16)
0.1 -2.182(46) 1.933(44) -1.334(21) 1.004(12) 0.970(16) -0.841(12) -1.537(31) 1.373(35) -0.822(14) 0.386(14)
0.2 -2.161(37) 2.025(44) -1.288(19) 1.068(14) 1.019(18) -0.775(11) -1.535(24) 1.471(31) -0.772(13) 0.444(16)
0.3 -2.025(33) 1.968(49) -1.224(16) 1.126(14) 1.064(21) -0.7187(61) -1.479(19) 1.486(34) -0.7135(89) 0.493(17)
0.4 -1.916(50) 1.973(76) -1.155(15) 1.163(19) 1.115(23) -0.6385(77) -1.378(23) 1.450(49) -0.6473(79) 0.556(16)
0.5 -1.847(42) 2.106(48) -1.083(14) 1.243(18) 1.168(25) -0.5663(66) -1.313(22) 1.489(51) -0.5750(78) 0.608(16)
0.6 -1.814(39) 2.197(58) -1.007(15) 1.277(22) 1.218(30) -0.4947(74) -1.233(20) 1.559(46) -0.5001(91) 0.681(16)
0.7 -1.694(46) 2.170(59) -0.944(14) 1.339(24) 1.274(30) -0.420(10) -1.175(20) 1.557(60) -0.4380(91) 0.742(16)
0.8 -1.667(46) 2.237(71) -0.868(18) 1.386(26) 1.327(31) -0.351(13) -1.120(20) 1.695(45) -0.368(11) 0.803(18)
0.9 -1.572(48) 2.154(85) -0.813(18) 1.429(28) 1.385(31) -0.286(16) -1.055(23) 1.681(53) -0.303(16) 0.873(16)
1 -1.546(41) 2.19(11) -0.742(18) 1.491(31) 1.464(31) -0.218(23) -0.975(25) 1.691(64) -0.223(24) 0.929(17)

𝐵0
2 𝐵1

2 𝐵2
2 𝐵3

2 𝐵4
2 𝐵5

2 𝐵0
3 𝐵1

3 𝐵2
3 𝐵3

3

0 2.208(62) -1.861(43) 1.435(21) 0.927(13) -0.932(12) -0.896(15) 1.647(36) -1.305(30) 0.917(14) -0.328(12)
0.1 2.306(51) -1.802(42) 1.470(25) 0.980(15) -0.8605(94) -0.833(13) 1.663(39) -1.237(29) 0.952(19) -0.2596(96)
0.2 2.402(62) -1.796(35) 1.530(29) 1.041(17) -0.7890(90) -0.766(12) 1.797(31) -1.233(21) 1.022(19) -0.2026(87)
0.3 2.276(63) -1.715(23) 1.552(31) 1.107(16) -0.7275(52) -0.7031(93) 1.762(44) -1.198(13) 1.052(22) -0.1359(84)
0.4 2.27(11) -1.582(39) 1.583(38) 1.142(21) -0.6488(54) -0.6356(87) 1.739(66) -1.099(16) 1.102(25) -0.068(11)
0.5 2.385(64) -1.533(29) 1.607(40) 1.224(20) -0.5674(62) -0.5630(88) 1.813(52) -1.040(14) 1.151(25) 0.12(12)
0.6 2.481(91) -1.480(28) 1.650(43) 1.251(26) -0.4904(73) -0.4955(96) 1.794(73) -0.962(16) 1.236(25) 0.098(71)
0.7 2.449(95) -1.415(24) 1.732(41) 1.304(26) -0.4208(92) -0.430(11) 1.892(66) -0.908(16) 1.278(29) 0.149(37)
0.8 2.608(78) -1.350(25) 1.761(45) 1.355(29) -0.346(13) -0.357(16) 2.027(50) -0.828(19) 1.345(27) 0.216(37)
0.9 2.651(95) -1.288(24) 1.756(54) 1.402(29) -0.275(17) -0.297(17) 1.955(68) -0.760(24) 1.406(26) 0.275(26)
1 2.35(18) -1.216(31) 1.899(47) 1.468(32) -0.211(30) -0.229(21) 2.004(73) -0.698(24) 1.443(33) 0.340(26)

Table 4.3: Values of the energy levels at 𝛽 = 4. These numbers correspond to the squares or points
displayed in 4.12 and 4.13 respectively.

Where this sum is truncated to some power D. We truncate at 𝐷 = 0 similar to the total charge.
In figure 4.7 the continuum limit for 𝐵3

3 is shown. This flat extrapolation is typical extrapolation
for all states and we do not show them here. The results are further summarized in table 4.3 for
𝛽 = 4 and 4.4 for 𝛽 = 6.

4.B More Spectrum

We provide the 𝛽 = 4, 6 spectra in figures 4.12 and 4.14 and summarize the values in the tables 4.3
and 4.4 respectively.

4.C Complex Contour

Here we provide a short explanation for our choice of imaginary offset.
In lattice field theory it has been known for a while that a contour deformation to the tangent

plane of the main saddle point of the action, i.e. the one with the greatest statistical weight, reduces
the sign problem. This point in C |Λ | fulfils

(
𝜕𝑥,𝑡𝑆[𝜙]

)
𝜙=𝜙𝑐 = 0. For the Hubbard model this

tangent plane turns out to be parallel to the real axis due to symmetry, hence we are talking about an
imaginary shift. Intuitively this improvement makes sense, because the integration manifold would
be closer to the Lefschetz Thimbles. The novelty of our recently developed contour deformation is
the expansion of the action around said saddle point making it an effective action. This follows a
standard practice in QFT and is equivalent to taking into account one-particle irreducible diagrams.
We call this the next to leading order approximation (NLO). Because the linear term vanishes we
expand until second order and get

𝑆eff [𝜙𝑐] = 𝑆[𝜙𝑐] +
1
2

log detH𝑆 [𝜙𝑐 ] . (4.35)

as the new function to be minimized, where H is the hessian. This can be done numerically along
the imaginary axis, i.e. 𝜙𝑐 = 𝑖𝜙1. By including the expansion we take into account the curvature of
a saddle point, which shifts the classical (tangent) offset towards the optimal sign minimizing plane.
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Figure 4.12: Similar spectrum as in figure 4.8 with 𝛽 = 4. The sign problem is significantly less
sever than at 𝛽 = 8 consequently giving better estimates past 𝜇 = 0.8.
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Figure 4.13: Similar plots as in figure 4.9 with different 𝛽 = 4.

𝜇 𝐴0 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐵0
1 𝐵1

1 𝐵2
1 𝐵3

1

0 -2.324(44) 1.991(34) -1.486(17) 0.9809(67) 0.9507(93) -0.9555(98) -1.735(26) 1.414(31) -0.904(15) 0.3368(88)
0.1 -2.264(29) 2.083(27) -1.407(20) 1.036(11) 1.003(13) -0.8759(77) -1.663(22) 1.486(23) -0.855(11) 0.393(10)
0.2 -2.142(41) 2.106(30) -1.339(16) 1.099(13) 1.064(14) -0.7941(69) -1.569(25) 1.531(26) -0.8071(64) 0.443(12)
0.3 -2.047(42) 2.163(45) -1.2889(87) 1.182(13) 1.089(20) -0.7137(70) -1.497(26) 1.523(46) -0.7194(76) 0.493(14)
0.4 -2.005(39) 2.181(54) -1.167(17) 1.232(17) 1.157(25) -0.6405(44) -1.437(19) 1.619(39) -0.6403(77) 0.547(14)
0.5 -1.886(55) 2.217(54) -1.101(15) 1.290(20) 1.194(26) -0.5551(62) -1.344(23) 1.633(46) -0.5662(73) 0.618(13)
0.6 -1.905(38) 2.306(63) -1.021(17) 1.330(43) 1.266(33) -0.4720(78) -1.277(28) 1.696(53) -0.4917(82) 0.683(13)
0.7 -1.724(85) 2.309(68) -0.934(24) 1.367(47) 1.323(36) -0.4106(67) -1.217(27) 1.684(72) -0.4274(58) 0.746(13)
0.8 -1.59(17) 2.29(15) -0.850(38) 1.483(72) 1.358(82) -0.330(12) -1.111(50) 1.620(92) -0.352(15) 0.829(14)
0.9 -1.63(12) 2.10(20) -0.797(29) 1.509(59) 1.42(10) -0.268(15) -1.038(62) 1.72(13) -0.284(27) 0.885(17)
1 -1.675(67) 2.20(20) -0.787(22) 1.531(97) 1.43(12) -0.197(39) -1.021(58) 1.64(18) -0.23(12) 0.965(24)

𝐵0
2 𝐵1

2 𝐵2
2 𝐵3

2 𝐵4
2 𝐵5

2 𝐵0
3 𝐵1

3 𝐵2
3 𝐵3

3

0 2.327(41) -1.976(32) 1.502(19) 0.9671(82) -0.9688(89) -0.925(12) 1.749(29) -1.425(21) 0.931(13) -0.3233(91)
0.1 2.399(38) -1.938(24) 1.526(27) 1.027(11) -0.8959(57) -0.857(10) 1.804(28) -1.369(15) 0.989(15) -0.2649(62)
0.2 2.414(44) -1.869(17) 1.560(36) 1.100(12) -0.8120(54) -0.7867(81) 1.841(37) -1.296(13) 1.042(17) -0.1988(44)
0.3 2.496(49) -1.745(24) 1.595(43) 1.137(17) -0.7390(30) -0.7130(70) 1.889(45) -1.194(18) 1.097(22) -0.1245(48)
0.4 2.524(58) -1.684(37) 1.635(45) 1.200(20) -0.6436(36) -0.6326(70) 1.952(40) -1.132(15) 1.131(26) -0.0535(56)
0.5 2.610(58) -1.546(33) 1.620(62) 1.253(25) -0.5659(38) -0.5485(85) 1.962(57) -1.063(13) 1.216(21) 0.06(13)
0.6 2.54(10) -1.523(34) 1.663(83) 1.327(28) -0.4799(47) -0.4776(88) 2.01(11) -0.954(22) 1.236(32) 0.092(27)
0.7 2.685(95) -1.406(59) 1.786(78) 1.362(40) -0.3944(81) -0.4224(85) 2.09(10) -0.930(13) 1.285(55) 0.160(20)
0.8 2.66(12) -1.31(12) 1.846(71) 1.430(62) -0.326(12) -0.352(13) 1.97(14) -0.826(27) 1.391(52) 0.228(17)
0.9 2.31(23) -1.20(13) 1.74(18) 1.463(55) -0.255(22) -0.284(14) 1.99(13) -0.808(42) 1.427(69) 0.292(18)
1 3.106(35) -1.288(71) 1.85(13) 1.462(87) -0.180(41) -0.202(53) 1.65(24) -0.720(40) 1.43(13) 0.341(17)

Table 4.4: Values of the energy levels at 𝛽 = 6. These numbers correspond to the squares or points
displayed in 4.14 and 4.15 respectively.
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Figure 4.14: Similar spectrum as in figure 4.8 with different 𝛽 = 6. The sign problem is less severe
than at 𝛽 = 8 consequently giving better estimates past 𝜇 = 0.8.
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Figure 4.15: Similar plots as in figures 4.9, 4.12 with different 𝛽 = 6.

We observe only small ranges of 𝜇 where it performs worse due to over-correction of steep regions
in the action landscape.

Further details on the derivation and other optimizations can be found in [7, 2, 8].
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Chapter 5

Moments of Nucleon Unpolarized,
Polarized, and Transversity Parton
Distribution Functions from Lattice
QCD at the Physical Point

This chapter is based on [4]:

Marcel Rodekamp, Michael Engelhardt, Jeremy R. Green, Stefan Krieg, Simonetta Liuti, Stefan
Meinel, John W. Negele, Andrew Pochinsky, and Sergey Syritsyn. “Moments of nucleon unpolarized,
polarized, and transversity parton distribution functions from lattice QCD at the physical point.”
In: Physical Review D 109.7 (Apr. 2024), p. 074508. issn: 2470-0010, 2470-0029. doi:
10.1103/PhysRevD.109.074508. arXiv: 2306.14431v2
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In this chapter, the focus shifts away from the Hubbard model and sign problem towards the study
of the internal structure of nucleons.

Nucleons are composite particles build from quarks and gluons. The underlying theory of quarks
and gluons is Quantum Chromodynamics (QCD). Consequently, first principle studies of nuclear
matter require calculation of observables within QCD. Due to the non-pertubative nature of QCD,
an analytic treatment appears beyond reach for regimes of interest. Lattice QCD, which discretizes
(Euclidean) space-time, formulates a systematic approach to calculate many relevant observables,
inter alia related to nucleons. Once discretized, and put within a finite volume, Monte Carlo
techniques can be employed to compute observables. Versions of the Hamiltonian Monte Carlo
(HMC) are widely adapted and developed for the specific needs of the theory. A comprehensive
introduction to the techniques of Lattice QCD is beyond the scope of this chapter; however, it can be
found in several well-established textbooks, including [12, 13, 14, 15]. A brief overview is provided
in the introductory section 1.3. As discussed there, a sign problem does not appear as the fermion
determinant is set up to be real. Even without a sign problem calculations with lattice QCD are
computationally challenging due to the vast amount of degrees of freedom.

The internal structure of Hadrons is a fascinating open question of particle physics from
theoretical, phenomenological, as well as experimental point of view. Naturally, a great deal
of work from the lattice QCD community goes into the evaluation of adjacent observables. In
particular, the description of the nucleon structure through generalized parton distribution functions
provides consistent mapping of the correlation between spatial and momentum information of the
constituents, called the partons, of a fast moving nucleon. In the forward limit, these reduce to the
ordinary parton distribution function encoding the momentum distribution. Traditionally, one can
extract so-called Mellin moments of the parton distribution functions [42, 36, 37, 43, 44, 36, 45,
46, 47, 48, 49] by relating them to matrix element of local leading twist operators. this procedure
works considerably well for the first few moments, however, becomes increasingly cumbersome
for higher moments due to statistical noise and mixing with lower dimensional operators. Other
methods have been proposed, based on the quasi-distribution, which require to calculate correlators
at significantly larger momenta, effectively limited by statistical noise [40, 41].

In the following chapter a calculation of the second Mellin moments ⟨𝑥⟩ of the nucleon’s
unpolarized, polarized, and transversity parton distribution functions is presented. This calculation is
based on two lattice QCD ensembles at the physical pion mass, which were previously generated [133,
134]. Typical improved actions are employed to reduce discretization effect, in particular, the
tree-level Symanzik-improved gauge action and for the 2+1 flavor use tree-level improved Wilson
Clover fermions coupling via 2-level HEX-smearing. The moments are extracted from forward
matrix elements of a set of local leading twist operators. Furthermore, the renomalization factors
are determined in RI-(S)MOM and matched to MS at a scale 2 GeV.

The analysis is done by calculating ratios of two and three point functions effectively extracting
the matrix elements in the large source-sink, previously denoted by 𝑇 , and large separation,
previously denoted by 𝜏, limit. For this multiple methods are employed, first using the summed
ratios and second through a direct fit of a two-state expansion of the ratio. Usually, summed ratios
have reduced excited state contamination compared to the usual ratios, however, the extraction
of matrix elements only takes the first state into account. Consequently, an analysis involving
two-states is performed. The results are averaged and a systematic error coming from the truncation
to one and two states is estimated.

The presented results indicate that operators exhibiting vanishing kinematics at zero momentum
can have significantly reduced excited-state contamination. The resulting polarized moment is
used to quantify the longitudinal contribution to the quark spin-orbit correlation. All results are in
agreement within two sigma with previously determined lattice results.

The analysis was developed and executed primarily by myself, including the investigation of
different operators. The required building blocks were calculated by Dr. Nesreen Hasan [50], yet
they had not been analysed previously. The calculation of the renormalization factors was done by
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Dr. Jeremy Green. All co-authors contributed with valuable discussions.

5.1 Introduction

The distribution of the momentum and spin within a hadron is encoded by parton distribution
functions (PDFs). Determining the PDFs is thus an indispensable ingredient to our understanding
of the structure of hadrons [135, 136, 40]. There have been various efforts of extracting the PDFs
from global fits, for a recent summary see [137]. The Lattice QCD community has also achieved
remarkable strides in the computation of PDFs over the recent years [37, 41, 138].

In this study1, our focus centers on the evaluation of the second Mellin moment, denoted as
⟨𝑥⟩ [42, 36, 37, 43], of unpolarized, polarized, and transversity PDFs. We achieve this through the
examination of matrix elements of local twist-two operators [44, 36, 45, 46, 47, 48, 49]. This method
does not require high momenta to suppress higher-twist contributions, as is needed in calculations
that use non-local operators, for example the widely used quasi-PDF method [40, 41]. One of
our objectives is to gain insights into the contamination stemming from excited states for different
matrix elements and constraining the resulting uncertainty. To attain this objective, a comprehensive
investigation of matrix elements at finite but modest momenta becomes imperative, as certain
operators have nonvanishing matrix elements exclusively at nonzero momentum. Although the
exploration of forward matrix elements of local operators at non-zero momentum is somewhat
unconventional, references [139, 140, 141] have previously ventured into this territory.

This paper is organized as follows. In section B.2 we explain our analysis chain and discuss
in detail which operators are considered. The different steps of the analysis to extract the matrix
elements are shown in section 5.3. We continue the computation of moments in section 5.4 where
they become renormalized and averaged over the different results. Further, our findings are put in
relation to other Lattice QCD results and global fits. In section 5.5 we utilize the moment of the
polarized PDF to compute the quark spin-orbit correlation. Last, in section B.4 we summarize our
findings. There are three appendices: Appendix 5.A shows the extraction of the matrix element
for each operator these results get summarized in plots shown in appendix 5.B and finally the
calculation of renormalization factors is discussed in appendix 5.C.

5.2 Method

Moments of PDFs can be obtained by calculating forward matrix elements of local leading-twist
operators [142, 143, 42, 45]

O𝑋 ≡ O𝑋{𝛼,𝜇} = 𝑞Γ
𝑋
{𝛼
↔
𝐷𝜇}𝑞. (5.1)

Here, the symbol 𝑋 denotes either 𝑉 , 𝐴, or 𝑇 , corresponding to the vector, axial, or tensor channels,
respectively, and in the tensor case Γ𝛼 = 𝜎𝛽𝛾 so that 𝛼 is a compound index. These channels
are associated with unpolarized, polarized, or transversity PDFs. Symmetrizing the indices and
subtracting traces is indicated by braces, {𝛼, 𝜇}. We specifically focus on the isovector channel,
which involves the difference between O𝑋 for up and down quarks, O𝑋 (𝑞 = 𝑢) − O𝑋 (𝑞 = 𝑑), to
avoid calculating disconnected diagrams. The left-right acting covariant derivative

↔
𝐷 = 1/2(

→
𝐷 −

←
𝐷)

is constructed on the Euclidean lattice using central finite differences between neighboring lattice
points, connected by appropriate gauge links.

It is well understood that these forward matrix elements are proportional to the desired moment
⟨𝑥⟩ [44, 36, 45]. The matrix element is given by

⟨𝑁 (𝑝) |O𝑋{𝛼,𝜇} |𝑁 (𝑝)⟩ = ⟨𝑥⟩ 𝑢𝑁 (𝑝)Γ
𝑋
{𝛼 i 𝑝

𝜇}𝑢𝑁 (𝑝) . (5.2)

In this equation, 𝑝 represents the 4-momentum of the nucleon.
1Preliminary results were reported in [6].
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In the continuum, the operators described in Equation (B.1) form irreducible representations of
the Lorentz group. However, in the context of Euclidean space, the Lorentz group is replaced by
the orthogonal group [42]. When we transition to the lattice, the orthogonal group further reduces
to the hypercubic group 𝐻 (4). This reduced symmetry can lead to certain operators mixing with
lower-dimensional ones. Fortunately, for the specific one-derivative operator studied, such mixing
does not occur [144].

Nevertheless, it is important to note that the Euclidean irreducible representations to which our
operators belong are divided into multiple hypercubic irreducible representations. In our work, we
adopt the common notation, where 𝜏 (𝑏)𝑎 represents the 𝑎th irreducible representation of dimension 𝑏.
Each of these hypercubic irreducible representations necessitates a distinct renormalization factor.
To keep renormalization diagonal, we construct operators with well-defined hypercubic irreducible
representations, as suggested by Göckeler et al. [42].

In practical terms, this implies that for each 𝜏
(𝑏)
𝑎 , we must compute the corresponding

renormalization factor 𝑍
𝜏
(𝑏)
𝑎

. This factor is subsequently applied to the matrix elements of an
operator that transforms irreducibly under the given representation. As a result, we denote the
renormalization factor for the operator O𝑋 as 𝑍O𝑋 , equivalent to 𝑍

𝜏
(𝑏)
𝑎

.
The matrix element described in Equation (B.2) can be determined on the lattice by considering

the ratios of three-point and two-point correlation functions, as previously discussed in the literature,
e.g. [44, 45]. The two-point correlation function, denoted as

C2pt (𝜏) =
∫

d3𝑦 𝑒−i ®𝑝 ®𝑦 Tr
{
Γpol

〈
𝜒 (®𝑦, 𝜏) 𝜒

(
®0, 0

)〉}
, (5.3)

quantifies the correlation between a nucleon source and a nucleon sink separated by a time interval
𝜏. Here we use2 Γpol = 𝑃+ [1 − i𝛾1𝛾2] with 𝑃+ = (1+𝛾4 )/2 and a nucleon interpolating operator of
the form

𝜒𝛼 = 𝜖𝑎𝑏𝑐

(
�̃�𝑇𝑎𝐶𝛾5𝑃+𝑑𝑏

)
�̃�𝑐,𝛼 (5.4)

with smeared quark fields 𝑞.
The three-point correlation function, denoted as

CO
𝑋

3pt (𝑇, 𝜏) =
∫

d3𝑦 d3𝑧

[
𝑒−i ®𝑝 ′ ®𝑦𝑒i( ®𝑝 ′− ®𝑝) ®𝑧 Tr

{
Γpol

〈
𝜒 (®𝑦, 𝑇) O𝑋 (®𝑦, 𝜏) 𝜒

(
®0, 0

)〉}]
, (5.5)

separates the source and sink nucleons by a time interval 𝑇 while incorporating the operator of
interest, O𝑋, at time 𝜏. From here on we let ®𝑝 ′ = ®𝑝 as indicated in (B.2). A visual representation is
given by Figure B.1. The matrix element is extracted in the limit where

M ≡ lim
𝑇−𝜏,𝜏→∞

𝑅(𝑇, 𝜏) ≡ lim
𝑇−𝜏,𝜏→∞

CO𝑋3pt (𝑇, 𝜏)
C2pt (𝑇)

. (5.6)

Once the matrix element is obtained, we can compute the moment by simply dividing the kinematic
factor, ⟨𝑥⟩ 𝐾 =M, with

𝐾 =
1

2𝐸𝑁 (𝑝)
Tr

{
Γpol

(
− i 𝛾𝜇𝑝𝜇 + 𝑚𝑁

) [
𝑎𝛼,𝜇Γ𝑋𝛼 𝑝𝜇

] (
− i 𝛾𝜇𝑝𝜇 + 𝑚𝑁

)}
Tr

{
Γpol

(
− i 𝛾𝜇𝑝𝜇 + 𝑚𝑁

)} , (5.7)

where the 𝑎𝛼,𝜇 ∈ R are appropriate factors to express the symmetrization and removal of traces
discussed above;

This analysis involves a spectral decomposition of the ratio, which allows us to isolate the matrix
element of the ground state:

𝑅(𝑇, 𝜏) =M + excited states. (5.8)
2The same results can also be obtained using 𝑃+ by itself as the spin projector in 𝐶2pt.
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𝜒 𝜒

O𝑋

0 𝜏 𝑇

𝜒 𝜒

Figure 5.1: Graphical representation of CO𝑋3pt (𝑇, 𝜏): a source nucleon inserted at time 𝑡 = 0 and a
sink nucleon removed at time 𝑡 = 𝑇 . A local leading twist operator (B.1) is inserted on a given time
slice 𝜏. The nucleons on the lattice are represented by interpolating operators 𝜒 (5.4)

To account for the influence of the first excited state, we expand the expression, obtaining the leading
contribution from excited states

M 1 + 𝑅1𝑒
− 𝑇2 Δ𝐸 cosh [(𝑇/2 − 𝜏) Δ𝐸] + 𝑅2𝑒

−𝑇Δ𝐸

1 + 𝑅3𝑒−𝑇Δ𝐸
, (5.9)

where Δ𝐸 represents the energy difference between the first excited state and the ground state
(Δ𝐸 = 𝐸1 − 𝐸0). In principle, one would aim to consider large values of 𝑇 and 𝜏 to approach the
limit defined in Equation (B.3). However, it is important to note that as 𝑇 increases, so does the
statistical noise.

The constants in the numerator, 𝑅1, 𝑅2, are dependent on the specific operator O𝑋, and their
values influence the extent of excited-state contamination in the matrix element. Smaller values of
these constants or the presence of certain symmetries can lead to reduced excited-state contamination
in the final result.

In the sum of ratios

𝑆(𝑇, 𝜏skip) = 𝑎
𝑇−𝜏skip∑︁
𝜏=𝜏skip

𝑅(𝑇, 𝜏) =M
(
𝑇 − 𝜏skip

)
+ excited states, (5.10)

excited-state contamination is exponentially suppressed with 𝑇 compared to 𝑇/2 for the ratios
themselves [145, 146]. Increasing 𝜏skip reduces excited-state contamination. Following the
proportionality relation of the ratios and desired matrix element (B.2), we can extract the latter by
use of a finite difference. Neglecting excited states, one finds

M =
𝑆(𝑇 + 𝛿, 𝜏skip) − 𝑆(𝑇, 𝜏skip)

𝛿
. (5.11)

Due to the available data we use a combination of 𝛿/𝑎 ∈ {1, 2, 3} depending on whether a neighbour
𝑇 + 𝛿 is available.

The analysis is outlined as follows:
Estimation of Ratios: First, we calculate the ratios 𝑅(𝑇, 𝜏) and ratio sums 𝑆(𝑇, 𝜏skip) for each

operator. In the unpolarized (V) case we use

1. 𝜏
(3)
1

1
2

[
O𝑉11+O

𝑉
22+O

𝑉
33

3 − O𝑉44

]
,

2. 𝜏
(3)
1

1√
2

[
O𝑉33 − O

𝑉
44

]
,

3. 𝜏
(6)
3

1√
2

[
O𝑉14 + O

𝑉
41

]
,

further, in the polarized (A) case we use
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1. 𝜏
(6)
4

1√
2

[
O𝐴13 + O

𝐴
31

]
,

2. 𝜏
(6)
4

1√
2

[
O𝐴34 + O

𝐴
43

]
,

and finally for the transversity (T) case we use

1. 𝜏
(8)
1 O𝑇211 − O

𝑇
244,

2. 𝜏
(8)
1 O𝑇233 − O

𝑇
244,

3. 𝜏
(8)
2 O𝑇124 − O

𝑇
241,

4. 𝜏
(8)
2 O𝑇142 + O

𝑇
421 − 2O𝑇214.

These have been carefully chosen to have nonzero kinematic factors, compare Equation (B.2), and
to be linearly independent.

Matrix Element Extraction: In the next step we extract matrix elementsM using two different
methods. Method 1: We extract the slope via finite differences at a specific source-sink separation
𝑇 = 𝑇 ′, compare (B.7). Method 2: We obtain the matrix element from a simultaneous (over all
source-sink separations) and fully correlated fit to the 2-state form, equation (B.5). A matrix
element obtained through either method is denoted asM|𝑇 ′ ,𝔪, where 𝔪 represents the extraction
method. For the second method the 𝑇 ′ index can be ignored.

From fitting the C2pt (𝜏) we can obtain the ground-state energy 𝐸0 which is used to calculate
the kinematic factor. After this, we calculate the unrenormalized moment as

𝔛O𝑋 , 𝑝,𝔪 (𝑇 ′) =
M|𝑇 ′ ,𝔪

𝑢𝑁 (𝑝)Γ
𝑋
{𝛼 i 𝑝

𝜇}𝑢𝑁 (𝑝)
. (5.12)

To simplify the following equations, we define a compound index 𝑗 =
(
O𝑋, 𝑝,𝔪

)
that runs over all

operators and momenta with nonzero kinematic factors as well as the different methods to obtain
the matrix element.

Renormalization Factors: We determine the renormalization factors in RI-(S)MOM and
match them to MS(2 GeV); for details see appendix 5.C. This allows us to express the renormalized
moment as 𝔛ren

𝑗
(𝑇 ′) = 𝑍O𝑋 · 𝔛 𝑗 (𝑇 ′).

Moment of PDF: To obtain the second moments of PDFs, we define the central value as the
weighted average of the different results:

⟨𝑥⟩ren =
∑︁

𝑗 ,𝑇 ′≥𝑇 𝑗plat

𝔚 𝑗 (𝑇 ′)𝔛ren
𝑗 (𝑇 ′). (5.13)

Here 𝑇 𝑗plat denotes the smallest source-sink separation such that 𝔛 𝑗 (𝑇 ′) agree for all 𝑇 ′ ≥ 𝑇 𝑗plat.
Naturally, the sum over 𝑇 ′ does not apply for the second method, where we fit the 2-state function, as
there is no 𝑇 ′ to consider. The weights 𝔚 𝑗 (𝑇 ′) ∝ 1/𝜎2

𝑗
(𝑇 ′ ) are normalised in such a way that weights

associated to sum ratios sum to 1/2 as do the weights for the 2-state fit. The used variances are
estimated via bootstrap over 𝔛

𝑗
(𝑇 ′) and the errors of the renormalization constants are propagated.

Systematic Error Estimation: Finally, we estimate a systematic error, constraining the
uncertainty from excited state contamination, by calculating the weighted standard deviation over
the different results:

𝜎2
syst =

∑︁
𝑗 ,𝑇 ′≥𝑇 𝑗plat

𝔚 𝑗 (𝑇 ′)
[
𝔛ren
𝑗 (𝑇 ′) − ⟨𝑥⟩

ren
]2
. (5.14)

Again the sum over 𝑇 ′ is not applied for the 2-state fit.
Relation to Quark Spin-Orbit Correlations: The longitudinal quark spin-orbit correlation

𝐿
𝑞

ℓ
𝑆
𝑞

ℓ
in the proton (where the subscript ℓ denotes alignment with the direction of motion of the
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Table 5.1: Details of the used ensembles. The ensembles are at the physical pion mass, 𝑚𝜋 ≈ 𝑚𝑝ℎ𝑦𝑠𝜋 .
A larger and a smaller lattice spacing, labelled as “Coarse” and “Fine” respectively, are available.
The ensembles were generated with a tree-level Symanzik-improved gauge action with 2+1 flavour
tree-level improved Wilson Clover fermions coupled via 2-level HEX-smearing [133, 134, 50].
Furthermore, the available source-sink separations (𝑇) and momenta (𝑝𝑥) which are used in the
calculation of the ratios, Equation (B.3), are displayed.

Ensemble Size 𝛽 𝑎[fm] 𝑚𝜋 [MeV] 𝑚𝜋𝐿 𝑇/𝑎 𝑝𝑥 [2𝜋/𝐿] Ncfg

Coarse 484 3.31 0.1163(4) 136(2) 3.9 3, 4, 5, 6, 7, 8, 10, 12 0,−2 212
Fine 644 3.5 0.0926(6) 133(1) 4.0 10, 13, 16 0,−1 427

proton) is related to the generalized transverse momentum-dependent parton distribution (GTMD)
𝐺
𝑞

11 [147] as in Equation (5.15), which in turn can be related to the generalized parton distributions
(GPDs) 𝐻𝑞, 𝐻𝑞, 𝐸𝑞

𝑇
and 𝐻𝑞

𝑇
[148, 149] as in Equation (5.16),

2 𝐿𝑞
ℓ
𝑆
𝑞

ℓ
=

∫ 1

−1
d𝑥

∫
d2𝑘𝑇

𝑘2
𝑇

𝑚2
𝑁

𝐺
𝑞

11 (5.15)

=
1
2

∫ 1

−1
d𝑥 𝑥𝐻𝑞 − 1

2

∫ 1

−1
d𝑥 𝐻𝑞

+
𝑚𝑞

2𝑚𝑁

∫ 1

−1
d𝑥 (𝐸𝑞

𝑇
+ 2𝐻𝑞

𝑇
) , (5.16)

where all distribution functions are quoted according to the nomenclature of [150] and are taken
in the forward limit; 𝑘𝑇 denotes the quark transverse momentum. 𝐻𝑞 is the standard chiral-even
helicity GPD and 𝐻𝑞 is the standard chiral-even unpolarized GPD; 𝐸𝑞

𝑇
and 𝐻𝑞

𝑇
are chiral-odd GPDs.

The longitudinal quark spin-orbit correlation has been evaluated according to Equation (5.15) in
Ref. [151]; on the other hand, the results of the present work can be used complementarily to access
the correlation via Equation (5.16), which can be viewed as the axial analogue of Ji’s sum rule
for orbital angular momentum: At the physical pion mass, the term proportional to 𝑚𝑞/𝑚𝑁 is
negligible. In the forward limit,

∫
d𝑥 𝐻𝑞 corresponds to the number of valence quarks, i.e., unity in

the isovector, 𝑢 − 𝑑 quark case considered here. Therefore, to an excellent approximation, one has

2 𝐿𝑞
ℓ
𝑆
𝑞

ℓ
=

1
2

(
⟨𝑥⟩ren

𝐴 − 1
)
, (5.17)

where
∫

d𝑥 𝑥𝐻𝑞 = ⟨𝑥⟩𝐴 in the forward limit has been identified. The results obtained in the
following section will be used to quantify the longitudinal quark spin-orbit correlation and will also
be confronted with the results of Ref. [151].

Simulation Parameters: We use a tree-level Symanzik-improved gauge action with 2+1
flavour tree-level improved Wilson Clover fermions coupling via 2-level HEX-smearing. Detailed
information about the simulation setup can be found in references [133, 134, 50]. Key simulation
parameters are summarized in Table B.1. Two ensembles, coarse and fine, at the physical pion
mass are used. These ensembles correspond to lattice spacings of 0.1163(4) fm and 0.0926(6) fm,
respectively. As described in [50], the smearing is done using Wuppertal smearing [152] –
𝑞 ∝ (1 + 𝛼𝐻)𝑁 𝑞 with 𝐻 being the nearest-neighbor gauge-covariant hopping matrix – at 𝛼 = 3
and 𝑁 = 60, 100 for the coarse and fine ensemble, respectively. For each ensemble, two-point and
three-point correlation functions are calculated. These calculations involve source-sink separations
ranging from approximately 0.3 fm to 1.4 fm for the coarse ensemble and approximately 0.9 fm to
1.5 fm for the fine ensemble. Furthermore, we consider two different momenta: ®𝑝 = (𝑝𝑥 , 0, 0) with
𝑝𝑥 = 0,−2[2𝜋/𝐿] for the coarse ensemble, and with 𝑝𝑥 = 0,−1[2𝜋/𝐿] for the fine ensemble.
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Figure 5.2: Ratios, cf. Equation (B.3), for the coarse ensemble. Various source-sink separations 𝑇
are represented by different colors, while the two momenta are distinguished using filled circles
and unfilled squares. Each subplot corresponds to a different operator from the different channels
organized by column. For the Unpolarized (V) case we display operators 2. and 3.; for the polarized
(A) case we display operators 1. and 2.; and for the transversity (T) case we display operators 3. and
1. for the upper and lower panel, respectively.

5.3 Estimation of Matrix Elements

In Figure B.2, we present results obtained from the coarse ensemble, using two different operators
O𝑋 per channel, as shown in the upper and lower rows. Each column is dedicated to a particular
channel: From top to bottom we display the operators 2. and 3. (unpolarized), 1. and 2. (polarized),
and 2. and 3. (transversity). Different source-sink separations are represented by various colours,
while momenta are distinguished using filled circles for zero momentum and unfilled squares for
finite momentum; this is kept consistent throughout all figures. A plateau in these plots corresponds
to the matrix element of the shown operator. To simplify comparison we directly translate this
to the bare moment, by multiplying with the kinematic factor 𝑅(𝑇, 𝜏) = 1/𝐾 · 𝑅(𝑇, 𝜏). It is worth
noting that we exclude the largest source-sink separation from these plots due to its substantial
statistical uncertainty.

These operator choices are intentionally selected to illustrate the extreme variability of the
excited-state contamination. While the upper row has a clearly visible cosh behavior – as expected
from the 2-state function (B.5) – the lower row remains perfectly flat within statistics. Moreover,
we observe that the convergence in source-sink separation is much faster for the lower row. For
instance, in the lower row the plateau already converges after 𝑇/𝑎 = 3 while the upper row requires
𝑇/𝑎 ≥ 8 in these particular examples. This rapid convergence in the lower row is noteworthy, but
it also comes with a drawback, which we observe in general, compare analysis summary plots in
appendix 5.A for the other operators: Operators that exhibit such flat behavior at small source-sink
separations have a vanishing kinematic factor at zero momentum, making them computationally
more challenging to handle.

In Figure B.3, we present sum ratios, using the same operators as in Figure B.2 but put into
one subplot. The upper and lower row represent the coarse and fine ensemble, respectively. The
value of 𝜏skip = 1 is fixed as the slope of the summed ratios did not change for larger values. The
presence of excited-state contamination is subtly hinted at by the slight curvature observed in the
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Figure 5.3: Ratio sums 𝑆(𝑇, 𝜏skip) on the coarse and fine lattice, employing the same operators as
in B.2. Each 𝑆(𝑇, 𝜏skip) is plotted at fixed 𝜏skip = 1. As in Fig. B.2, different momenta are displayed
with hollow and filled markers.

data, although it is considerably less pronounced compared to the ratios.
In Figure 5.4, we present the result of the matrix element extraction for the same operators as

displayed in Figure B.2. Similar plots for all used operators can be found in appendix 5.A. We plot
horizontal lines to represent the average (over 𝑇 ′ ≥ 𝑇 𝑗plat) slope of the summed ratios, divided by
the kinematic factor. These slopes are extracted with the finite difference approach (B.7). As the
matrix element is given by a plateau of the ratios, the expectation is that the plotted slope agrees at
least with the central points 𝜏 ∼ 0 of large source-sink separations, which can be verified for all
operators within uncertainty. Again, those operators which are already flat match this expectation
for more points and at smaller source sink separation.

Following the axolotl-like shape of the ratios, the solid, i.e. zero momentum, and dashed, i.e.
finite momentum, lines indicate the central value 2-state fit result, using the form (B.5). The area
around these indicate statistical uncertainty obtained via fitting on each bootstrap sample. We use
all data points that are covered by the best fit plot in a (𝑇, 𝜏)-simultaneous fit. This presents a fit
interval in 𝜏/𝑎 which has been chosen by minimizing a 𝜒2/dof. The smaller source-sink separations
for the coarse ensemble are excluded by this condition, as no points were left in the fit interval.

Considering all fits, values of 𝜒2/dof range from 0.4 to 2.7. Correlations which go into these
were estimated over the bootstrap samples of the included points and then kept fixed for the central
value fit as well as the fits per bootstrap sample.

Notably, the values of the matrix element obtained from summed ratios and 2-state fits always
agree within statistics. The latter has reduced statistical uncertainty.

5.4 Moments of PDFs

In Figure B.4, we illustrate the results for the renormalized moments, which are extracted from the
summed ratios (shown in grey, defined in Equation (B.6)) and the 2-state fits (displayed in red, as
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Figure 5.4: Extraction result for the matrix elements, cf. Equation (B.8), plotted on top of the
original ratio data. The same operators and layout as in Figure B.2 are used. Coarse and fine
ensemble results are displayed in the first two and second two rows, respectively. Dot-dashed and
dotted horizontal lines represent the average slope of the summed ratios divided by the kinematic
factor. Solid and dashed lines represent the simultaneous and fully correlated central value fit to the
ratios using the 2-state form (B.5). Surrounding colored areas represent bootstrap uncertainties.
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Figure 5.5: Renormalized moments calculated from the summed ratio (1-state) (grey) (B.6), and
2-state fit (red) (B.5). The final average is displayed as a blue solid line while its statistical
uncertainty is indicated via the blue dot-dashed line. The blue band represents the statistical and
systematic uncertainty, cf. Equation (B.10), added in quadrature. The light gray points are not
included in the average as per the 𝑇 𝑗plat constraint, compare (B.9), to reduce excited-state effects.
The ordinate limit is cut at 4𝜎 around the final average to increase resolution of the relevant points.

defined in Equation (B.5))3. The final average is denoted by the blue solid line, while its statistical
uncertainty is indicated by the blue dot-dashed lines. The blue band represents the combined
statistical and systematic uncertainty, as outlined in Equation (B.10), added in quadrature. The light
gray points are not included in the average, in accordance with the 𝑇 𝑗plat constraint. To enhance the
resolution of the relevant data points, the ordinate limit is truncated at 4𝜎 and centered around the
final average. The numerical values of the final averages can be found in Table 5.2.

Comparing the two ensembles we find agreement within statistics indicating a flat continuum
extrapolation. With only two points a reliable extrapolation is not possible. The best we can do
is to interpret the data points as Gaussian distributions, with mean equaling the central value and
width given by the uncertainties added in quadrature, and perform a Bayesian fit. The relevant scale
of discretization effects [144, 153] is 𝑎ΛQCD resulting in a term proportional to 𝛼𝑠𝑎ΛQCD. The
operators themselves have tree-level quadratic discretization effects, resulting in the extrapolation

⟨𝑥⟩ren (𝑎) = ⟨𝑥⟩ren
cont

(
1 + 𝑚1𝛼𝑠𝑎ΛQCD + 𝑚2

(
𝑎ΛQCD

)2
)

(5.18)

We use Gaussian priors for the coefficients, 𝑝𝑚𝑖 = N(0, 2) and no prior on the continuum value
⟨𝑥⟩ren

cont. We approximate 𝛼𝑠 ≈ 0.3 which is sufficient due the fact that the coefficients 𝑚𝑖 are mainly
constrained by the prior. The continuum-extrapolated results are likewise given in Table 5.2.

Our results are in good agreement, at the level of one to two standard deviations, with moments
previously computed by other Lattice QCD collaborations [154, 46, 47, 48, 155, 49]. Moreover,
confronting our moments with phenomenological extractions, the comparison is quite favorable in
the case of the axial moment, with Ref. [156] giving ⟨𝑥⟩𝐴 = 0.190 ± 0.008. On the other hand, in

3Summary plots, showing these results separated and labeled by their corresponding operators, momenta, methods
and source-sink separations can be found in appendix 5.B.
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Ensemble ⟨𝑥⟩𝑟𝑒𝑛

Unpolarized (V) Coarse 0.192(08) (20)
Fine 0.203(09) (12)
Continuum 0.200(17)

Polarized (A) Coarse 0.212(05) (21)
Fine 0.213(09) (07)
Continuum 0.213(16)

Transversity (T) Coarse 0.235(06) (25)
Fine 0.210(10) (18)
Continuum 0.219(21)

Table 5.2: Final averages for the second moments of PDFs in the unpolarized, polarized and
transversity channels, compare Figure B.4. For the coarse and fine ensemble results, the central
value is obtain as a weighted average over the different operators, momenta, and extraction methods,
cf. Equation (B.9). Further, the statistical uncertainty (first uncertainty) comes from a bootstrap over
the original ensemble, while the systematic uncertainty (second uncertainty) is computed using the
weighted standard deviation over the same set of results, cf. Equation (B.10). We extrapolated the
two points to the continuum limit using a Bayesian fit approach assuming them to be independent
and Gaussian distributed with mean equaling the central value and standard deviation coming from
the combined statistical and systematical uncertainty, compare Figure 5.6.

the unpolarized case, a certain tension between lattice and phenomenological results remains, with
the recent determination in Ref. [137], ⟨𝑥⟩𝑉 = 0.143(5), differing from our result by about three
standard deviations.

5.5 Quark spin-orbit correlation

With the results from Table 5.2 we can calculate the longitudinal quark spin-orbit correlation in the
proton according to Equation (5.17). The obtained values can be found in Table 5.3, along with
the result obtained using the GTMD approach, Equation (5.15), in Ref. [151]. The results are in
good agreement. As discussed in more detail in Ref. [151], the magnitude of this direct correlation
between the spin and the orbital angular momentum of a quark significantly exceeds the correlation
induced by the quark being embedded in a polarized proton environment. There is, therefore, a
strong direct dynamical coupling between quark orbital angular momentum and spin, reminiscent
of the 𝑗 𝑗 coupling scheme in atomic physics, rather than the Russell-Saunders coupling scheme.

Table 5.3: Deduced isovector longitudinal quark spin-orbit correlation, estimated using the results
for the polarized (A) moment shown in Table 5.2 and relation (5.17).

Ensemble 2𝐿𝑞
ℓ
𝑆
𝑞

ℓ
(𝜎stat)

(
𝜎syst

)
Coarse −0.394(02) (10)
Fine −0.393(05) (0)
Continuum −0.393(08)
GTMD|𝑎=0.114fm [151] −0.40(2)
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Figure 5.6: Continuum extrapolation using a Bayesian fit with the model described in Equation
(5.18). The limited amount of data makes this extrapolation strongly dependent on the chosen priors
for the coefficients 𝑚𝑖 . Coming from a power counting these are expected to be of O(1), reflected
in Gaussian priors of mean zero and variance 2. Resulting estimates are listed in Table 5.2.

5.6 Summary

In this study, we compute the second Mellin moment ⟨𝑥⟩ of the unpolarized, polarized, and
transversity parton distribution functions using two lattice QCD ensembles at the physical pion
mass. Our approach involves extracting forward nucleon matrix elements at both zero and finite
momentum, boosted in the x-direction. Through the finite momentum data, we identify operators
that exhibit remarkably small excited-state contamination. Given the two ensembles a reliable
continuum extrapolation is not accessible. Regardless, we apply a Bayesian fit, accepting a strong
dependence on the choice of priors, to provide a continuum estimate. The resulting values are
in agreement with both individual ensembles: ⟨𝑥⟩𝑢+−𝑑+ = 0.200(17), ⟨𝑥⟩Δ𝑢−−Δ𝑑− = 0.213(16),
and ⟨𝑥⟩ 𝛿𝑢+−𝛿𝑑+ = 0.219(21). Furthermore, we extract the isovector longitudinal quark spin-orbit
correlation in the proton using the moment of the polarized PDF, 2𝐿𝑞

ℓ
𝑆
𝑞

ℓ
= −0.393(08). We find

good agreement with earlier calculations based on GTMDs [151].
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5.A Results Per Operator

In this appendix we show the analysis summary resolved per operator. As before, coarse and fine
ensemble results are displayed in the first and second row, respectively. Different colors represent
different source sink separations and the horizontal dash-dotted, i.e. zero momentum, and dotted, i.e.
finite momentum, lines represent the average (over 𝑇 ′ ≥ 𝑇 𝑗plat) slope of the summed ratios, divided by
the kinematic factor. These slopes are extracted with the finite difference approach (B.7). The solid
and dashed curves are the best-fit result of the 2-state fit to (B.5), the surrounding band corresponds
to the bootstrap uncertainty of the fit. Figure 5.7 displays the analysis of the operators corresponding
to the unpolarized (vector) PDFs. Figure 5.8 displays the analysis of the operators corresponding to
the polarized (axial) PDFs. Figures 5.9 and 5.10 display the analysis of the operators corresponding
to the transversity (tensor) PDFs. As mentioned in Section 5.3, agreement of the slope of summed
ratios with the plateau region expected around 𝜏 = 0 is given for all operators within one sigma.
Corresponding best 2-state fit lines are in perfect agreement with the data points.

5.B Summary Plots

We present summary plots of the moments for the coarse 5.11 and fine 5.12 ensemble. The three
channels, unpolarized (V), polarized (A), and transversity (T) are shown in the columns. Each
result, i.e. the different operators and momenta, is displayed in the panels separated by the dotted
and dashed lines. The solid black line separates the sum-ratio method, points in purple, and the
2-state fit method, points in red. For the sum-ratio method the different 𝑇 ′ are spread across the
abscissa. As a point of reference, the average over the points, as described in equation (B.9), is
shown by the horizontal blue line, with the statistical uncertainty shown by the dotted dashed line
and the combined uncertainty by the blue band. This corresponds to the blue line in figure B.4. A
(strong) dependence on the source-sink separation can be seen in the sum-ratio related points.
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Figure 5.7: Analysis results of the ratios (points), slope of summed ratios (horizontal lines) and
2-state fit results (curves) for the operators 1., 2. and 3. corresponding to the unpolarized (vector)
PDF.
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Figure 5.8: Analysis results of the ratios (points), slope of summed ratios (horizontal lines) and
2-state fit results (curves) for the operators 1. and 2. corresponding to the polarized (axial) PDF.
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Figure 5.9: Analysis results of the ratios (points), slope of summed ratios (horizontal lines) and
2-state fit results (curves) for the operators 1. and 2. corresponding to the transversity (tensor) PDF.
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Figure 5.10: Analysis results of the ratios (points), slope of summed ratios (horizontal lines) and
2-state fit results (curves) for the operators 3. and 4. corresponding to the transversity (tensor) PDF.
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Figure 5.11: Summary plot of the renormalized moment of PDF of the coarse ensemble resolved for
each operator O𝑋, represented by the corresponding ID and irrep, and momentum 𝑝𝑥 . The purple
points correspond to results obtained by the sum-ratio method evaluated at a source-sink separation
𝑇 ′. The red points are obtained using the two-state fit. The blue solid line corresponds to the overall
average as described by equation (B.9) with the dashed line indicating statistical uncertainty and
the blue area indicating statistical and systematic uncertainty added in quadrature.

10 13 10 13 10 13 10 13 10 13

p x
=

0 

p x
0 

p x
=

0 

p x
0 

p x
=

0 

0.15

0.20

0.25

0.30

0.35

x
re

n
V

1. 3
1 2. 3

1 3. 6
3 1. 3

1 2. 3
1 3. 6

3
px = 0 px 0 px = 0 px 0 px = 0

T'

10 13 10 13 10 13

p x
=

0 

p x
=

0 

p x
0 

0.15

0.20

0.25

0.30

0.35

x
re

n
A

1. 6
4 2. 6

4 1. 6
4 2. 6

4
px = 0 px = 0 px 0

T'

10 13 10 13 10 13 10 13 10 13 10 13

p x
=

0 

p x
=

0 

p x
=

0 

p x
0 

p x
=

0 

p x
0 

0.15

0.20

0.25

0.30

0.35

x
re

n
T

1. 8
1 2. 8

1 3. 8
2 4. 8

2 1. 8
1 2. 8

1 3. 8
2 4. 8

2
px = 0 px = 0 px = 0 px 0 px = 0 px 0

T'

Figure 5.12: Summary plot of the renormalized moment of PDF of the fine ensemble, similar to
figure 5.11
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5.C Nonperturbative Renormalization

We determine renormalization factors for isovector vector, axial, and tensor one-derivative twist-two
operators using the nonperturbative Rome-Southampton approach [162], in both RI′-MOM [162,
163] and RI-SMOM schemes [164], and convert and evolve to the MS scheme at scale 2 GeV
using perturbation theory. We label these renormalization factors 𝑍𝜌

𝐷𝑉
, 𝑍𝜌

𝐷𝐴
, and 𝑍𝜌

𝐷𝑇
for the

one-derivative vector, axial, and tensor operators, respectively, with 𝜌 denoting the irreducible
representation of the hypercubic group that takes on two possible values in each case.

We largely follow our earlier work that used operators with no derivatives [50]. Our primary
data are the Landau-gauge quark propagator,

𝑆(𝑝) =
∫

𝑑4𝑥 𝑒−𝑖 𝑝 ·𝑥 ⟨𝑢(𝑥)𝑢(0)⟩, (5.19)

and the Landau-gauge Green’s functions for operator O,

𝐺O (𝑝′, 𝑝) =
∫

𝑑4𝑥′ 𝑑4𝑥 𝑒−𝑖 𝑝
′ ·𝑥′𝑒𝑖 𝑝 ·𝑥 ⟨𝑢(𝑥′)O(0)𝑢(𝑥)⟩. (5.20)

Here O is an isovector quark bilinear with one derivative, yielding one Wick contraction: a
connected diagram. We evaluate these objects using four-dimensional volume plane wave sources,
yielding an effectively large sample size from the volume average. From these, we construct our
main objects, the amputated Green’s functions,

ΛO (𝑝′, 𝑝) = 𝑆−1(𝑝′)𝐺O (𝑝′, 𝑝)𝑆−1(𝑝). (5.21)

Provided that O belongs to a definite irreducible representation of the hypercubic group, these
renormalize diagonally: Λ𝑅O = (𝑍O/𝑍𝜓)ΛO . To avoid determining 𝑍𝜓 directly, we will form ratios
to determine 𝑍O/𝑍𝑉 and take 𝑍𝑉 computed from pion three-point functions in Ref. [50].

5.C.1 Conditions and matching

The RI′-MOM scheme uses kinematics 𝑝′ = 𝑝, whereas RI-SMOM uses 𝑝2 = (𝑝′)2 = 𝑞2 with
𝑞 = 𝑝′ − 𝑝. In both cases, the scale is defined as 𝜇2 = 𝑝2. For the vector current, we impose the
conditions listed in Ref. [50] on Λ𝑅

𝑉𝜇
to determine 𝑍𝑉/𝑍𝜓.

For the one-derivative operators, we start with the continuum decomposition of the amputated
Green’s function ΛO𝜇𝜈... (𝑝′, 𝑝) into a sum of products of 𝑂 (4)-invariant functions Σ (𝑖)O (𝑝

2) and
simple kinematic tensors Λ(𝑖)O𝜇𝜈... (𝑝

′, 𝑝). We then decompose the operator and its kinematic tensors
into irreducible representations 𝜌, replacing 𝜇𝜈 . . . with 𝜌𝑛, where 𝑛 ranges from 1 to the dimension
of 𝜌. Tracing the amputated Green’s function with each of the tensors within each irrep, we get∑︁

𝑛

Tr
[
Λ
(𝑖)
O,𝜌𝑛 (𝑝

′, 𝑝)ΛO,𝜌𝑛 (𝑝′, 𝑝)
]
= 𝑀

𝑖 𝑗
𝜌 (𝑝′, 𝑝)Σ ( 𝑗 )O,𝜌 (𝑝

2), (5.22)

where
𝑀
𝑖 𝑗
𝜌 (𝑝′, 𝑝) =

∑︁
𝑛

Tr
[
Λ
(𝑖)
O,𝜌𝑛 (𝑝

′, 𝑝)Λ( 𝑗 )O,𝜌𝑛 (𝑝
′, 𝑝)

]
(5.23)

is a known kinematic matrix. Inverting 𝑀, we obtain the 𝑂 (4)-invariant functions computed
within each irrep 𝜌, Σ (𝑖)O,𝜌 (𝑝

2). Our choice of decomposition, given below, is such that at tree level,

Σ
(𝑖)
O (𝑝

2) = 𝛿𝑖1, and our renormalization conditions will all be of the form Σ
(1)
O𝑅 ,𝜌 (𝜇

2) = 1. Basing
this condition on a 𝑂 (4)-invariant function computed within each irrep ensures that the ratio of
renormalization factors for two different lattice irreps of the same continuum operator is scale and
scheme-invariant.
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The one-derivative vector operator is

O𝑉𝜇𝜈 = S𝜓𝜏3𝛾𝜇
↔
𝐷𝜈𝜓, (5.24)

where S takes the symmetric traceless part of the tensor:

S𝑇𝜇𝜈 =
1
2

(
𝑇𝜇𝜈 + 𝑇𝜈𝜇

)
− 1

4
𝛿𝜇𝜈𝑇𝛼𝛼. (5.25)

Our decomposition for the RI′-MOM scheme is a scaled version of the one used by Gracey [165]:

Λ
(1)
O𝑉𝜇𝜈
(𝑝, 𝑝) = S𝛾𝜇𝑝𝜈 , (5.26)

Λ
(2)
O𝑉𝜇𝜈
(𝑝, 𝑝) = S

𝑝𝜇𝑝𝜈

𝑝2 /𝑝, (5.27)

where here and below we neglect tensors of opposite chirality. For RI-SMOM, the derivative in
the operators basis used by Gracey [166] did not yield a definite 𝐶-symmetry, unlike our operator
containing

↔
𝐷. This allows us to use half as many tensors as Gracey; see also [167, 168]. Defining

𝑝 = (𝑝′ + 𝑝)/2, our tensors and their relation to Gracey’s tensors 𝑃𝑊2
(𝑖) are the following:

Λ
𝑆 (1)
O𝑉𝜇𝜈
(𝑝′, 𝑝) = S𝑝𝜇𝛾𝜈 =

1
4

(
𝑃
𝑊2
(2) − 𝑃

𝑊2
(1)

)
, (5.28)

Λ
𝑆 (2)
O𝑉𝜇𝜈
(𝑝′, 𝑝) = S

𝑝𝜇𝑝𝜈

𝑝2 /𝑝 = −1
6

8∑︁
𝑖=3
(−1)𝑖𝑃𝑊2

(𝑖) , (5.29)

Λ
𝑆 (3)
O𝑉𝜇𝜈
(𝑝′, 𝑝) = S

𝑝𝜇𝑞𝜈

𝑞2 /𝑞 =
1
2

(
𝑃
𝑊2
(3) − 𝑃

𝑊2
(5) + 𝑃

𝑊2
(6) − 𝑃

𝑊2
(8)

)
, (5.30)

Λ
𝑆 (4)
O𝑉𝜇𝜈
(𝑝′, 𝑝) = S

𝑞𝜇𝑞𝜈

𝑞2 /𝑝 =
1
2

(
5∑︁
𝑖=3

𝑃
𝑊2
(𝑖) −

8∑︁
𝑖=6

𝑃
𝑊2
(𝑖)

)
, (5.31)

Λ
𝑆 (5)
O𝑉𝜇𝜈
(𝑝′, 𝑝) = S

𝑝𝛼𝑞𝛽

𝑞2 𝛾[𝜇𝛾𝛼𝛾𝛽 ] 𝑝𝜈 =
1
2

(
𝑃
𝑊2
(10) − 𝑃

𝑊2
(9)

)
, (5.32)

where 𝑝2 = 3
4𝜇

2 and the square brackets denote antisymmetrization. The one-derivative axial
operator,

O𝐴𝜇𝜈 = S𝜓𝜏3𝛾𝜇𝛾5
↔
𝐷𝜈𝜓, (5.33)

is related to the vector operator by chiral symmetry and its tensor structures correspond to those of
the vector operator, multiplied by 𝛾5. We use the four-loop anomalous dimension [169, 170, 171]4

and three-loop matching to MS [165, 168].
The one-derivative tensor operator is

O𝑇𝜇𝜈𝜌 = S𝜓𝜏3𝜎𝜇𝜈
↔
𝐷𝜌𝜓, (5.34)

where the symmetrization and trace subtraction has the form [165]

S𝑇𝜇𝜈𝜌 =
1
2

(
𝑇𝜇𝜈𝜌 + 𝑇𝜇𝜌𝜈

)
− 1

3
𝛿𝜈𝜌𝑇𝜇𝛼𝛼 +

1
6

(
𝛿𝜇𝜈𝑇𝜌𝛼𝛼 + 𝛿𝜇𝜌𝑇𝜈𝛼𝛼

)
(5.35)

with 𝑇𝜇𝜈𝜌 = 1
2 (𝑇𝜇𝜈𝜌 − 𝑇𝜈𝜇𝜌). Choosing to start by antisymmetrizing 𝜇𝜈 leaves us with only two

tensor structures in the RI′-MOM scheme, compared with Gracey’s three:

Λ
(1)
O𝑇𝜇𝜈𝜌
(𝑝, 𝑝) = S𝜎𝜇𝜈𝑝𝜌, (5.36)

Λ
(2)
O𝑇𝜇𝜈𝜌
(𝑝, 𝑝) = S 1

𝑝2𝜎𝜇𝛼𝑝𝛼𝑝𝜈 𝑝𝜌. (5.37)

4Ref. [172] reports that Ref. [170] contains a misprint.
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For RI-SMOM, the supplementary data of Ref. [173] lists 30 structures. First antisymmetrizing 𝜇𝜈
reduces this to 16 and charge conjugation further reduces the number to 8. We write the first six as

Λ
𝑆 (1)
O𝑇𝜇𝜈𝜌
(𝑝′, 𝑝) = S𝜎𝜇𝜈 𝑝𝜌, (5.38)

Λ
𝑆 (2)
O𝑇𝜇𝜈𝜌
(𝑝′, 𝑝) = S 1

𝑝2𝜎𝜇𝛼𝑝𝛼𝑝𝜈 𝑝𝜌, (5.39)

Λ
𝑆 (3)
O𝑇𝜇𝜈𝜌
(𝑝′, 𝑝) = S 1

𝑞2𝜎𝜇𝛼𝑞𝛼𝑞𝜈 𝑝𝜌, (5.40)

Λ
𝑆 (4)
O𝑇𝜇𝜈𝜌
(𝑝′, 𝑝) = S 1

𝑞2𝜎𝜇𝛼𝑞𝛼𝑝𝜈𝑞𝜌, (5.41)

Λ
𝑆 (5)
O𝑇𝜇𝜈𝜌
(𝑝′, 𝑝) = S 1

𝑞2𝜎𝜇𝛼𝑝𝛼𝑞𝜈𝑞𝜌, (5.42)

Λ
𝑆 (6)
O𝑇𝜇𝜈𝜌
(𝑝′, 𝑝) = S 1

𝑞2𝑝2𝜎𝛼𝛽𝑝𝛼𝑞𝛽𝑝𝜇𝑞𝜈 𝑝𝜌. (5.43)

The last two tensors involve 𝛾5 or the identity, and they have vanishing trace with each of the first
six, so they can be neglected. We use the three-loop anomalous dimension [165], the three-loop
matching from RI′-MOM [165], and the two-loop matching from RI-SMOM [173].

5.C.2 Calculation

Our numerical setup follows Ref. [50], extended to include both sets of momenta on both ensembles.
We use partially twisted boundary conditions, namely periodic in time for the valence quarks.
The plane wave sources are given momenta either along the four-dimensional diagonal 𝑝 (′) =
2𝜋
𝐿
(𝑘, 𝑘, 𝑘,±𝑘) or along the two-dimensional diagonal 𝑝, 𝑝′ ∈ { 2𝜋

𝐿
(𝑘, 𝑘, 0, 0), 2𝜋

𝐿
(𝑘, 0, 𝑘, 0)}, with

𝑘 = 2, 3, . . . , 𝐿4𝑎 . By contracting them in different combinations, we get data for both RI′-MOM
kinematics, 𝑝′ − 𝑝 = 0, and RI-SMOM kinematics, 𝑝′ − 𝑝 = 2𝜋

𝐿
(0, 0, 0,±2𝑘) or ± 2𝜋

𝐿
(0, 𝑘,−𝑘, 0).

We used 54 gauge configurations from each ensemble; however, on one configuration of the coarse
ensemble the valence twisted boundary condition yielded a near-singular Dirac operator and the
multigrid solver was unable to converge. We omitted this configuration, using only 53 on the coarse
ensemble.

Perturbatively matching from RI′-MOM or RI-SMOM to the MS scheme and evolving to
scale 2 GeV does not eliminate dependence on the initial scale 𝜇: there are remaining effects from
lattice artifacts, truncation of the perturbative series, and nonperturbative contributions. To control
these artifacts, we perform fits including terms polynomial in 𝜇2 and also a pole term, following
Ref. [174]. These fits have the form 𝐴 + 𝐵𝜇2 + 𝐶𝜇4 + 𝐷/𝜇2, where the constant term 𝐴 serves as
our estimate of the renormalization factor ratio 𝑍O/𝑍𝑉 . Results for this ratio, choosing one irrep for
each of the three operator types, are shown in Fig. 5.13. For each operator and scheme, we perform
three fits: using the 4D data with two different fit ranges 𝜇2 ∈ [4, 20] and [10, 30] GeV2 and using
the 2D data with 𝜇2 ∈ [4, 15] GeV2. In some cases (particularly using the very precise RI-SMOM
data), the fit quality is very poor and thus we scale the statistical uncertainty by

√︁
𝜒2/dof whenever

this is greater than one. Following the same prescription as in Ref. [50], we combine the results
first within each scheme and then for our final result using both schemes, estimating the systematic
uncertainty (which is dominant) from the scatter of results and conservatively taking the maximum
statistical uncertainty. In all cases, there is good agreement between the two schemes.

Renomalization-group-invariant ratios of renormalization factors in different irreps 𝑍𝜌
′

O /𝑍
𝜌

O are
shown in Fig. 5.14. Note that it is not possible to isolate the chosen 𝑂 (4)-invariant function for
the tensor operator in irrep 𝜏 (8)2 in the RI-SMOM scheme using the 4D kinematics. Because in
the continuum and infinite volume these ratios are independent of 𝜇2, we can fit using much lower
momenta and only avoid the region 𝜇2 < 1 GeV2 due to finite-volume effects. We also omit the
pole term, i.e. set 𝐷 = 0. In all cases, we obtain results within a few percent of unity.

Our final values for the ratios of renormalization factors are given in Table 5.4.
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Figure 5.13: Ratios of renormalization factors 𝑍 𝜏
(3)
1
𝐷𝑉
/𝑍𝑉 , 𝑍 𝜏

(3)
4
𝐷𝐴
/𝑍𝑉 , 𝑍 𝜏

(8)
1
𝐷𝑇
/𝑍𝑉 on the coarse (left)

and fine (right) ensembles, determined using the RI′-MOM (green circles) and RI-SMOM (orange
squares) intermediate schemes together with momenta along the four-dimensional diagonal (filled
symbols) and two-dimensional diagonal (open symbols) and then matched to MS at scale 2 GeV.
For most points, the statistical uncertainty is smaller than the plotted symbol. The solid curves
are fits to the 4D data in the 𝜇2 range from 4 to 20 GeV2, the dashed curves in the range from 10
to 30 GeV2, and the dotted curves are fits to the 2D data in the range from 4 to 15 GeV2. The fit
curves without the pole term are also plotted in the range 0 < 𝜇2 < 6 GeV2. To reduce clutter,
uncertainties on the fits are not shown. The symbols filled with black near 𝜇2 = 0 provide the
final estimat for each intermediate scheme; their outer (without end cap) and inner (with end cap)
error bars show the total and statistical uncertainties. The filled dark gray diamonds are the final
estimates that combine both schemes.
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Figure 5.14: Scale and scheme-invariant ratios of renormalization factors 𝑍 𝜏
(6)
3
𝐷𝑉
/𝑍 𝜏

(3)
1
𝐷𝑉

, 𝑍 𝜏
(6)
4
𝐷𝐴
/𝑍 𝜏

(3)
4
𝐷𝐴

,

and 𝑍 𝜏
(8)
2
𝐷𝑇
/𝑍 𝜏

(8)
1
𝐷𝑇

, determined using the RI′-MOM (green circles) and RI-SMOM (orange squares)
intermediate schemes together with momenta along the four-dimensional diagonal (filled symbols)
and two-dimensional diagonal (open symbols) and then matched to MS at scale 2 GeV. For most
points, the statistical uncertainty is smaller than the plotted symbol. The solid curves are fits to the
4D data in the 𝜇2 range from 1 to 8 GeV2 and the dotted curves are fits to the 2D data in the range
from 1 to 5 GeV2. To reduce clutter, uncertainties on the fits are not shown. The symbols filled
with black near 𝜇2 = 0 provide the final estimate for each intermediate scheme; their outer (without
end cap) and inner (with end cap) error bars show the total and statistical uncertainties. The filled
dark gray diamonds are the final estimates that combine both schemes.
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coarse fine
𝑍𝑉 0.9094(36) 0.9438(1)

𝑍
𝜏
(3)
1
𝐷𝑉
/𝑍𝑉 1 1.0736(142)(202) 1.0925(52)(137)

𝑍
𝜏
(6)
3
𝐷𝑉
/𝑍 𝜏

(3)
1
𝐷𝑉

1.0232(36)(63) 1.0167(29)(27)

𝑍
𝜏
(3)
4
𝐷𝐴
/𝑍𝑉 1 1.0883(113)(316) 1.1009(51)(192)

𝑍
𝜏
(6)
4
𝐷𝐴
/𝑍 𝜏

(3)
4
𝐷𝐴

1.0058(28)(50) 1.0074(40)(16)

𝑍
𝜏
(8)
1
𝐷𝑇
/𝑍𝑉 1 1.0906(165)(191) 1.1105(56)(104)

𝑍
𝜏
(8)
2
𝐷𝑇
/𝑍 𝜏

(8)
1
𝐷𝑇

1.0034(35)(38) 1.0016(134)(19)

Table 5.4: Vector current renormalization factor from Ref. [50] and ratios of renormalization factors
computed in this work.

97



98



Chapter 6

Summary

This thesis included work on a set of topics. First, in chapter 2 and 3 with an extension in the
appendix A, aspects of the sign problem within the Hubbard model were discussed to extend the
computable parameter space of a Monte Carlo simulation. Second, in chapter 3, these results where
used to get a first understanding of the total system charge of the molecule C20H12 perylene as a
function of chemical potential at a hot temperature. During this work, it became clear that a non
automatic procedure dealing with the sign problem can be used for single ensembles but needs
further improvements to be used in a full parameter scan where O(100) ensembles are required.
Consequently, in chapter 4, the sign problem reduction is done only by a simple shift, that has been
discussed in an adjacent work [7]. In this chapter, a greater focus was placed on the analysis of
physical observables for the molecule C20H12 perylene extending the total charge calculation of
chapter 3 and additionally extracting the single particle spectrum. Finally, in chapter 5, the focused
shifted towards a Monte Carlo study of aspects on hadron structure, namely moments of parton
distribution functions.

6.1 Software

In addition to the content and results of this thesis, software had to be implemented to perform
the required calculations and analysis. I want to point out two major packages, that were mainly
developed by me.

First, the software package "Nanosystem Simulation Library", or short NSL [10] provides a full
GPU enabled package to perform Monte Carlo simulations of low dimensional systems. It uses an
abstraction layer above the C++ implementation of PyTorch [90], called libtorch, to handle memory
management as well as linear algebra operations. This package implements various discretizations
for the Hubbard model, in particular the exponential discretization of the fermion matrix, but is
not limited to this model. An entire infrastructure is created to facility all kinds of action with
a particular focus on usage-simplicity. This infrastructure defines possible actions, a handling
for runtime parameters and file-IO as well as implementations of HMC with more Monte Carlo
algorithms in development phase. It is intended as a replacement for isle [175] that was used in
chapter 2. One current draw back is in the realm of small systems, where additional overhead
created by the interface to libtorch, slows down computation. However, especially the possibility to
go onto GPU allows for a improved volume scaling compared to isle [175].

Second, I developed a correlator analysis program [11] based on lsqfit [132] and ideas of model
averaging through the Baysian Akkaike information criterion, see appendix 4.A.6 for details. This
work was done together with Dr. Giovanni Pederiva, who helped debugging and testing the code.
We found, that a model averaging approach on well defined criterions is beneficial compared to a
discussion on best fits, as it automatically includes systematic uncertainties from the model choice.

99



6.2 Aspects of the Sign Problem in the Hubbard Model

As mentioned, the first chapters of the thesis discuss the sign problem of the Hubbard model. At
non-zero chemical potential, the Hubbard action, as derived in (1.37), is generally complex valued
causing the Boltzmann weight to oscillate strongly. Using reweighting, it is still possible to estimate
observables, however, at the cost of reduced statistics, compare equation (1.9). Mitigating the
sign problem by means of increasing the statistical power is still a major target of algorithmic
development. In particular, in the first two chapters I tested and discussed a method proposed by
Wynen et.al. [61]. A neuronal network, that intrinsically complexifies configurations, is defined to
learn a path deformation towards Lefschetz thimbles, compare equations (1.44) and (1.45). The
proposed architecture are paired affine coupling layers with complex valued trainable parameters,
i.e. the weights and biases. Chapter 2 shows that the supervised training of this architecture allows
for the successful simulation of systems with increasingly severe sign problems. The discussed
machine learning enhanced HMC approach reduces the sign problem sufficiently and enjoys a
statistical power much greater than original real-plane or even tangent-plane HMC. This is explicitly
shown in figure 2.3. Further the effect is shown on correlators, where the statistical noise is
drastically reduced, compare figure 2.4. We demonstrated the fidelity and correctness of our
method by simulating 2, 4 and 8 site models and comparing our results to that obtained from direct
diagonalization, obtaining excellent agreement. A note about reweighting is added in this thesis
arguing that the non-holomorphic contribution to the Jacobian is negligible to obtained precision.
The tested method is then applied to the 18 sites problem, a small piece of a graphene sheet,
where direct diagonalization is not possible. The correlators, show significantly reduced statistical
noise compared to the tangent plane, arguing for possible extended parameter space. Adapting the
reweighting of section 2.6, shows favorable volume scaling for the generation of configurations.

To avoid naively calculating Jacobian determinants on measurements, a further test is executed
using holomophic architectures in chapter 3. Additionally, further improvements on the generation
of data are implemented that track the explosion of the real part of the action, compare algorithm 3.2.
This allows to maintain a more relevant training data set compared to chapter 2 as the configurations
with smaller action have more weight in the path integral. Unfortunately, all these training procedure
require a considerable amount of testing making this approach hard to use for a large number of
ensembles. In the future, I aim to tackle this problem tying to identify a more automatic procedure
of training. The tested system, C20H12 perylene, is slightly larger than the 18 site problem from
chapter 2, but does not require a infinite volume, in space, limit. This makes it a great target to
test the developed methods for obtaining physically relevant observables that classify the molecule.
Therefore, for a set of chemical potentials at fixed temperature 𝛽 and distretization Nt, are simulated
and correlators are obtained. Overall, the reduction of statistical noise is self-evident as seen in
figures 3.3 and 3.4. Finally, effective masses are extracted, from the correlators, as a function of
chemical potential 𝜇, compare figures 3.5a to 3.5d. This provides a first estimate of the single
particle spectrum. In conclusion, the combination of measures against the sign problem, namely
the tangent plane and the path deformations through neural networks, can be effective to perform a
charge scan of this molecule. However, for a full continuum study constant, semi-analytic, shifts are
beneficial due to the large number of ensembles.

6.3 The Single Particle Spectrum of Perylene

All this work converges, as presented in chapter 4, in an ab initio study of the single particle
spectrum of perylene described by the Hubbard model. As mentioned, the sign problem is reduced
by simulating on the next-to-leading order plane, compare equation (1.51), which allows to compute
the molecule at chemical potentials 𝜇 = 0, 0.1, · · · , 1.1. The statistical power, shown in figure 4.2,
quantifies the severity of the sign problem as a function of the chemical potential at different values
for discretizations, Nt, and inverse temperatures, 𝛽, on this simple manifold.
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The focus of this study lays on the continuum analysis of physical quantities. To control the
continuum extraploation, 𝛿 → 0, three discretizations, Nt = 32, 64, 96, are chosen. All these
are calculated at three different inverse temperatures, 𝛽 = 4, 6, 8, to provide a rough idea on the
temperature dependence. All continuum extrapolations, exemplarily shown on the single particle
spectrum in figure 4.7 and on the charge in figure 4.11, show little dependence on the discretization
suggesting that the chosen values for Nt are already far in the scaling regime for the given precision.

All observables are computed non-interactingly, i.e.𝑈 = 0, and compared with the interacting,
𝑈 = 2, result. The charge is explicitly quantified as a function of the chemical potential, see
figure 4.3. Considering the non-interacting result for the charge, one finds an exact jump at
𝜇 = 0.34730. For the interacting theory, the charge jump is suggested between 𝜇 = 0.4 and 0.5.
Furthermore, comparing interacting results and non-interacting ones shows stronger discrepancy
with increasing chemical potential. After quantifying the meaning of chemical potential with the
total system charge, Then a variational basis of single particle operators is computed from which the
single particle spectrum is estimated. This requires a fitting procedure, that works automatically, as
the number of correlators to fit is large. A Baysian fitting procedure with model averaging based on
the Akkaike information criterion is employed. The continuum single particle energies are mapped
as a function of chemical potential, compare figures 4.8 and 4.9. It can be observed that a negative
energy crosses zero between chemical potentials of 0.4 and 0.5 as suggested by the total charge.
Notably, the energies show significant divergence from the non-interacting result growing towards
larger chemical potential.

6.4 Moments of Parton Distribution Functions

Parallel, to the work in the Hubbard model, interesting questions arise about the structure of a
nucleon. In the last chapter, 5, an analysis for the second Mellin moment, ⟨𝑥⟩, of the unpolarized,
polarized, and transversity parton distribution functions using two lattice QCD ensembles at
the physical pion mass. These ensembles were generated using a tree-level Symanzik-improved
gauge action and 2+1 flavor tree-level improved Wilson Clover fermions coupling via 2-level
HEX-smearing. Forward matrix elements of a set of local leading twist operators are used to
determine the moments and renomalization factors in are determined in RI-(S)MOM and match to
MS at scale 2GeV.

Certain operators have only a contribution at non vanishing momentum due to the kinematic
factors relating moments and matrix elements. I identified operators that, at finite momentum, have
remarkably small excited-state contamination, compare figure B.2. Excitingly, these have vanishing
kinematics at zero momentum.

A continuum extrapolation can not reliably be performed, given that only two ensembles are
available. Regardless, within a Bayesian approach a continuum estimate can be obtained, by treating
the results of the individual ensemble as Gaussian distributions. Naturally, this estimate is strongly
biased by the chosen priors. After, a relatively conservative choice of priors, a continuum value is
extracted that agrees with the two individual ensembles points, resulting in ⟨𝑥⟩𝑢+−𝑑+ = 0.200(17),
⟨𝑥⟩Δ𝑢−−Δ𝑑− = 0.213(16), and ⟨𝑥⟩ 𝛿𝑢+−𝛿𝑑+ = 0.219(21). Furthermore, the isovector longitudinal
quark spin-orbit correlation in the proton is obtained by using the moment of the polarized PDF,
2𝐿𝑞

ℓ
𝑆
𝑞

ℓ
= −0.393(08). This is in good agreement with previous results based on GTMDs [151].
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Appendix A

Mitigating the Hubbard sign Problem. A
Novel Application of Machine Learning

This appendix chapter is based on [5]:

Marcel Rodekamp and Christoph Gäntgen. “Mitigating the Hubbard Sign Problem. A Novel
Application of Machine Learning.” In: vol. LATTICE2022. 2023. doi: 10.22323/1.430.0032.
arXiv: 2211.09584
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In this appendix chapter the results of chapter 2 are extended. Several systems of strongly correlated
electrons described by the Hubbard model are discussed. Due to the sign problem of these systems,
the use of machine learning enhanced HMC (ML HMC) is demonstrated. The difference between
the original formulation of [61] and the network discussed in chapter 2 is discussed. To complete
the story, some results from chapter 2 are reused as indicated. Additional ensembles, calculated
for the master thesis [176], is reanalyzed, extending the 18-site model analysis over a wide range
of chemical potentials. Additional examples, the C20 and C60 buckminsterfullerene molecules,
are added. These have a sign problem even at zero chemical potential due to their non-bipartite
geometry. The investigation on these molecules was later continued in [7] using the NLO plane and
optimized shifts.

A.1 Introduction

Markov Chain Monte Carlo algorithms (MCMC) enjoy great success in simulating many theories
from the Ising model up to Lattice QCD. Albeit the potential, MCMC has a hard time whenever the
action becomes complex-valued due to the associated Boltzmann weight loosing its interpretability
as probability distribution.

Using MCMC, we focus on the Hubbard model capturing electronic properties of systems
with strongly interacting electrons propagating on a fixed spatial lattice of ions. Examples for
such systems are carbon nano structures like Graphene and Fullerene 𝐶𝑛. In the Hubbard model
the sign problem is observed at finite chemical potential as well as on non-bipartite lattices1.
Reweighting can treat the complex-valued Boltzmann weight though, at the same time, introducing
an exponentially hard to estimate normalization.

Deforming the region of integration onto Manifolds with an almost constant imaginary action
showed great promise in reducing the sign problem substantially [62, 23, 63, 64]. Practically,
this deformation requires numerical integration of differential equations which becomes infeasible
for larger systems. We aim to identify efficient Neural Network architectures to learn such
beneficial deformations. This removes the cost of numerically integrating configurations and
enables simulations of large systems with a sign problem beyond the standard reweighting approach.

In this proceedings, we collect material from our earlier publications [61, 1] and a master
thesis [176]. The manuscript is organized in the following way. In section A.2 a brief introduction to
the Hubbard model and the tested system is presented along a short discussion of the sign problem.
This discussion is then followed by the definition of the neural network architectures as published
in [61, 1]. Further, in section A.3 correlator results are presented and we discuss the obtained charge
density of one of the larger systems.

A.2 Formalism

The Hubbard model [66, 30, 31] describes a fixed spatial lattice 𝑋 of ions on which electrons can
move and interact. Its Hamiltonian, in particle-hole basis, is

H [𝐾,𝑉, 𝜇] = −
∑︁
𝑥,𝑦∈𝑋

(
𝑝†𝑥𝐾

𝑥𝑦 𝑝𝑦 − ℎ†𝑥𝐾 𝑥𝑦ℎ𝑦
)
+ 1

2

∑︁
𝑥,𝑦∈𝑋

𝜌𝑥𝑉
𝑥𝑦𝜌𝑦 + 𝜇

∑︁
𝑥∈𝑋

𝜌𝑥 ,

where the amplitudes in 𝐾 encode the hopping of fermionic particles 𝑝 and holes ℎ, the potential 𝑉
describes the interactions between charges

𝜌𝑥 = 𝑝
†
𝑥 𝑝𝑥 − ℎ†𝑥ℎ𝑥 (A.1)

and the chemical potential 𝜇 incentivizes charge.
1Bipartite describes lattice geometries at which the sites can be two coloured such that no neighbouring sites have the

same colour. For example, the square is bipartite while the triangle is non-bipartite.
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(a) 2 Sites (b) 8 Sites (c) 18 Sites (boundary suppressed)

(d) Fullerene C20 (e) Fullerene C60

Figure A.1: Showing the different geometries considered in this proceedings. Each vertex represents
an ion and each (dashed) line depicts the nearest-neighbor hopping that is allowed by the Hubbard
model. Dashed lines indicate periodic boundary condition where possible.

By adjusting the hopping and lattice symmetry 𝐾 as well as the interaction 𝑉 this model
can describe a wide variety of physical systems. In the following investigation, five systems are
considered as displayed in figure A.1. The 2 site system describes one unit cell of the honeycomb
structure used for Graphene type models which we successively built up with the 8 and 18 site ones.
Secondly, we present preliminary results for fullerenes 𝐶20 and 𝐶60 at zero chemical potential. In
all cases 𝐾 encodes nearest-neighbor hopping and we assume an on-site interaction,

𝐾 = 𝜅𝛿⟨𝑥𝑦⟩ & 𝑉 = 𝑈𝛿𝑥𝑦 . (A.2)

In figure A.1 the sites, i.e. ions and their nearest neighbor connections are depicted. Lines stretching
out display periodic boundary of the spatial lattice (suppress in the 18 site case).

A.2.1 Simulation Setup

Calculating observables follows the standard procedure [24] of evaluating the thermal trace. After
trotterizing into Nt time slices, inserting Grassmannian resolutions of the identity and linearizing
the interaction via the Hubbard-Stratonovich transformation [29] the Hamiltonian is transformed
into the action

𝑆 [Φ | 𝐾,𝑉, 𝜇] = − log det{𝑀 [Φ | 𝐾, 𝜇] · 𝑀 [−Φ | − 𝐾,−𝜇]} + 1
2

Nt−1∑︁
𝑡=0

∑︁
𝑥,𝑦∈𝑋

Φ𝑡 𝑥𝛿𝑉
−1 𝑥𝑦Φ𝑡 𝑦 ,

(A.3)
where Φ ∈ R |Λ | is an auxiliary field on the spacetime lattice Λ = [0, 𝑁𝑡 − 1] ⊗ 𝑋 and 𝛿 = 𝛽/𝑁𝑡 is
the (temporal) lattice spacing controlled by the inverse temperature 𝛽. The fermion matrix is not
uniquely defined on the lattice, we choose the exponential discretization [19]

𝑀 [Φ | 𝐾, 𝜇]𝑥′𝑡 ′;𝑥𝑡 = 𝛿𝑥′𝑥𝛿𝑡 ′𝑡 −
(
𝑒𝛿 (𝐾+𝜇)

)
𝑥′𝑥
𝑒+𝑖Φ𝑥𝑡B𝑡 ′𝛿𝑡 ′ (𝑡+1) (A.4)

105



where B encodes the anti-periodic boundary conditions in time. For bipartite systems we may
replace −𝐾 with +𝐾 in the holes’ fermion matrix [24]. The thermal trace for this is expressed as
path integral

⟨O⟩ = 1
Z

∫
D [Φ] 𝑒−𝑆 [Φ]O [Φ] =

∫
D [Φ] 𝑝𝑆 [Φ] O [Φ] (A.5)

For cases of real action we can apply MCMC to generate Ncfg configurations according to the
Boltzmann distribution 𝑝𝑆 [Φ] and estimate observables (A.5) by an unweighted expectation value.
If the action is complex valued we apply reweighting

⟨O⟩ =

〈
𝑒−𝑖 Im{𝑆}O

〉
Re{𝑆}〈

𝑒−𝑖 Im{𝑆}
〉

Re{𝑆}
=

1
Σ

〈
𝑒−𝑖 Im{𝑆}O

〉
Re{𝑆} . (A.6)

and sample configurations according to the Boltzmann distribution under the real part of the action.
It has been shown [20] that an effective number of configurations

Neff
cfg = |Σ |2 · Ncfg (A.7)

controls the scaling of statistical errors ∼
(
Neff

cfg

)−1/2
. This translates the sign problem to the ability

of calculating the denominator Σ, i.e. the statistical power, reliably [20, 19, 54, 71].

A promising approach to mitigate, or even remove, the sign problem is to deform the region of
integration Φ ∈ MR = R |Λ | onto a manifold on which the imaginary part of the action is (nearly2)
constant [73, 23] ,M =

{
Φ ∈ C |Λ | | Im{𝑆 [Φ]} = 𝑐𝑜𝑛𝑠𝑡.

}
. IfM is in the same homology class

asMR an analogue of the Cauchy integral theorem ensures that the observables are unchanged.
Parametrizing fields Φ(𝜙) ∈ M then adds a Jacobian defining the used effective action

S [𝑒 𝑓 𝑓 ] 𝜙 = S [Φ (𝜙)] − log det{𝐽 [𝜙]}, 𝐽𝑖 𝑗 =
𝜕Φ(𝜙)𝑖
𝜕𝜙 𝑗

(A.8)

There are many strategies for picking target manifolds M [74]. One choice is to try to
approximate the Lefschetz thimbles [73]. Each thimble contains a critical point Φ𝑐𝑟 that is a fixed
point of the holomorphic flow

𝑑Φ(𝜏)
𝑑𝜏

= ±
(
𝜕𝑆 [Φ(𝜏)]
𝜕Φ(𝜏)

)∗
, Φ(0) = 𝜙 (A.9)

introducing the fictitious flow time 𝜏. A thimble is the set of complexified configurations that
flow to a critical point under downward flow, i.e. − in (A.9). An integrator for (A.9) will always
be computationally expensive [23, 1, 61]. However, the non-interacting solution 𝜙 = 0 for (A.9)
assuming a constant field Φ𝑡 ,𝑥 = Φ𝑡 ′ ,𝑥′ defines a (hyper-) plane parallel to the real planeMR that
goes through the main critical point 𝑖Φ0

𝑐. This so called tangent planeM𝑇 = {𝜙 + 𝑖Φ0
𝑐 | ∀𝜙 ∈ MR}

showed promise in sufficiently mitigating the sign problem, at least for smaller systems [54, 78, 79,
61, 1].

Neural Network Architectures

To improve beyond the tangent plane it seems plausible to identify a transformation that transforms
a given configuration 𝜙 ∈ MR to a target manifold M̃ that may be closer toM than the tangent
plane. Such a transformation may be parametrized by a neural network

SHIFT :MR → M̃, 𝜙 ↦→ 𝜙 + 𝑖
(
Φ0
𝑐 + NN (𝜙)

)
. (A.10)

2If Im{𝑆} ≈ 𝑐𝑜𝑛𝑠𝑡, the statistical power |Σ | =
���〈𝑒𝑖 Im{S[𝑒 𝑓 𝑓 ] } 〉��� ≈ ��〈𝑒𝑖 ·𝑐𝑜𝑛𝑠𝑡 〉�� ≈ 1 yielding nearly no reduction in

effective number of configurations Neff
cfg ≈ Ncfg.
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For the neural network partNN we pick two linear layers 𝜔𝜙 + 𝑏 with real trainable weights 𝜔 and
biases 𝑏 which are separated by a leacky-ReLU. As the effective action (A.8) suggests the defining
transformations Jacobian needs to be computed

log det{𝐽SHIFT [𝜙]} = log det
{
1 + 𝑖 𝜕NN (𝜙)

𝜕𝜙

}
(A.11)

which requires an O
(
𝑉3) algorithm for the determinant calculation. This scaling is not feasible for

large scale systems but still much cheaper than applying a Runge-Kutta — or similar algorithms —
to integrate the holomorphic flow equations.

To improve the scaling, we identify a neural network that has a cheaper determinant. One
such architectures is given by Affine Coupling Layers [88, 89] that approximate the integrator
Φ(𝜙) ≈ NN(𝜙)

NNℓ (Φ) =
{
𝑐ℓ [Φ𝐴, Φ𝐵] 𝐴ℓ components
Φ𝐵 𝐵ℓ components

(A.12)

Here 𝐴 and 𝐵 are layer-specific partitions of the input vector Φ of equal cardinality 1/2|Λ|. Φ𝐴,𝐵 are
the components of the input belonging to the indicated partition. We apply the affine coupling [88]

𝑐ℓ [Φ𝐴,Φ𝐵] = 𝑒𝑚ℓ (Φ𝐵 ) ⊙ Φ𝐴 + 𝑎ℓ (Φ𝐵) . (A.13)

The coupling functions𝑚ℓ , 𝑎ℓ : C|Λ|/2 → C
|Λ|/2 are again two linear layers separated by the non-linear

Softsign function. To ensure that the neural network produces a complex configuration as is required
by the holomorphic flow, the weights and biases need to be complex valued which is discussed in
more detail in [1]. A single layer just transforms half of the configuration, we thus pair it up with a
second layer that is set up in the same way but with the roles of 𝐴 and 𝐵 interchanged. This setup
allows to express the Jacobian, with 𝐿/2 of these pairs, in the form

log det{𝐽NN (𝜙)} =
𝐿∑︁
ℓ=1

|𝐴|−1∑︁
𝑖=0

𝑚ℓ (Φℓ−1(𝜙)𝐵)𝑖 . (A.14)

which adds only an O(𝑉) cost to the application of the transformation.
For any of these architectures we perform Molecular Dynamics onMR using a standard leapfrog

algorithm and then apply the network to move onto M̃. Accept/Reject is then performed according
to the effective action (A.8) using the transformed configuration from the Network and the Jacobian
defined by the network. This machine learning enhanced Hybrid Monte Carlo is referred to as ML
HMC.

A.2.2 Observables

We are interested in the electronic properties of a given system. Euclidean correlation functions of
a single particle or a single hole

𝐶
𝑝

ℎ
𝑥𝑦 (𝑡) =

〈
𝑝†𝑥 (𝑡)𝑝𝑦 (0)

〉
=

〈
𝑀 [±Φ| ± 𝐾,±𝜇]−1

𝑥𝑡 ;𝑦0

〉
, (A.15)

momentum projected and averaged we obtain 𝐶𝑠𝑝 (𝑡) [1]. In the future we aim to match the
parameters 𝑈/𝜅, 𝜇 to real-world systems and extract the band-gap 𝐶𝑥𝑦 (𝑡) ∼ 𝑒−𝑡 ·Δ𝐸 . Further, the
charge density is defined by

𝜌(𝜇) = 1
|𝑋 |

∑︁
𝑥∈𝑋
⟨𝜌𝑥⟩ =

1
|𝑋 |

∑︁
𝑥∈𝑋

𝐶
𝑝
𝑥,𝑥 (0) − 𝐶ℎ𝑥,𝑥 (0). (A.16)

It is point symmetric around the electric neutral half-filling point, 𝜇 = 0, due to particle-hole
symmetry. For very large 𝜇 → ±∞ the charges (+) or holes (-) are favoured yielding a charge
density of ±1. Qualitatively, it is expected that the system’s charge equals integer multiples of the
electric charge 𝑛 · 𝑒− with 𝑛 ∈ [−Nx,Nx], i.e. 𝜌(𝜇) = 𝑛/Nx.
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Figure A.2: Each row in this figure shows the correlators of a system with 2 (upper row)
and 8 (lower row) sites [1]. The different columns correspond to a number of configurations,
Ncfg ∈ {1000, 100 000}, used to estimate the correlators. Three methods — ML HMC with
coupling layerNN (blue), HMC on the Tangent Plane (red) and exact diagonalization (black) — are
compared to show the effectiveness and correctness of the introduced machine learning enhanced
method. The sign problem manifests as a loss of signal, i.e. small number of effective configurations
Neff

cfg (A.7), and greatly increases as the number of sites expands. It can be seen that the ML HMC
has a substantially reduced sign problem.

A.3 Numerical Results

We experimented with different training setups. Foremost, supervised training using ADAM to
minimize the 𝐿1−Loss. The training data consists out of O(10 000) pairs (𝜙,Φ(𝜙)) obtained by a
Runge-Kutta of 4th order. For further details consider [61, 1].

In figure A.2 correlators for systems with 2 and 8 sites are compared using the different
algorithms HMC (red) — on the tangent plane — ML HMC (blue), applying the coupling network
NN , and exact diagonalization (black) [1]. We use Ncfg ∈ {1000, 100 000} to portray the effect of
the statistical power on the effective number of configurations. Corresponding statistical powers |Σ |
can be found in [1]. The system parameters — Nt = 32, 𝛽 = 4,𝑈 = 4 and 𝜇 = 3 — are kept fix. The
ML HMC outperforms the HMC in terms of signal. The 8 site system has a stronger sign problem
to an extend that HMC retrieves no signal. If a signal is obtained, both algorithms agree with the
exact diagonalization. In figure A.3 the correlators for the system with 18 sites are displayed [1].
The system is computed at Nt = 32, 𝛽 = 4, 𝑈 = 3 and 𝜇 = 3. The sign problem is much stronger
than in the previous cases due to the larger volume. Nevertheless the ML HMC extracts a good
signal for the correlators. Similar to the 8 site case HMC can’t keep up. Due to the number of sites
exact diagonalization is not feasible.

Continuing the 18 site model — with 𝑈 = 2, 𝛽 = 5, Nt = 32 — we want to study the charge
density (A.16) subjected to the chemical potential. This can be seen in figure A.4 [176]. We compare
tangent plane HMC (red) and ML HMC (blue) using the SHIFT network. Varying the chemical
potential has shown that for small and large values the sign problem is mild (on the tangent plane).
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Figure A.3: The correlators of Graphene with 18 ions are shown [1]. 100 000 measurements are
taken. With this larger lattice direct diagonalization as in figure A.2 is not tractable any more hence
only the two statistical methods ML HMC using the coupling network NN (blue) and HMC on the
tangent plane (red) are compared. As expected the ML HMC improves the signal drastically.

0 1 2 3 4 5

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(
)

Charge Density

ML HMC HMC

Figure A.4: We computed the charge density for several values of the chemical potential 𝜇 ∈ [0, 5.2]
for an 18 site Graphene sheet [176]. For most smaller and larger values of 𝜇 the sign problem is
small enough that estimation with HMC on the tangent plane (red) is sufficient. However, in the
region 𝜇 ∈ [2, 3] an ML HMC (blue) is used to narrow particular values for which the sign problem
becomes untraceable. The features at 𝜇 = 0 and 𝜇 → ∞ are captured as expected. Finding the
charge plateaus at 𝜌(𝜇) ∼ 𝑛, however, is yet unavailable due to the small 𝛽. The dashed line at
𝜌(𝜇) = 4/18 indicate an expected plateau which may be surmised around 𝜇 ≈ 1.
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Figure A.5: The correlators of Fullerene 𝐶20 (upper row) and 𝐶60 (lower row) are shown. A real
plane (red) and a tangent plane (blue) HMC at inverse temperature 𝛽 = 8 and Nt = 32 time slices
are compared. We consider an on-site interaction 𝑈 = 3 and zero chemical potential. The, here
negligible, sign problem solely stems from the non-bipartiteness of the system due to the pentagonal
rings. Already, at small number of configurations Ncfg ≤ 10 000 the signals are very good.

However, in the intermediate range of 𝜇 ∈ [2, 3] the tangent plane is not sufficient for a reasonable
estimate, where we apply ML HMC with the SHIFT network. The point at 𝜇 = 2.5 requires more
attention and we plan to address it with the coupling network in the future expecting much better
results. The expected behaviour of the charge density, 𝜌(𝜇 = 0) = 0 and 𝜌(𝜇→∞) → 1, is found
numerically. The dashed line exemplarily indicates an expected plateau at ⟨𝜌(𝜇)⟩ = 4/18. As it can
be seen, this plateau is not fully deducible but may be surmised around 𝜇 ≈ 1. Studies of smaller
systems, see [176], indicate increasing 𝛽 makes these plateaus more pronounced.

To probe our method in physically more relevant systems than the 18 Site Graphene sheet, we
started an investigation of Fullerene 𝐶20 and 𝐶60. The correlators at Nt = 32, 𝛽 = 8, 𝑈 = 3 and
zero chemical potential are displayed in figure A.5. The mild sign problem is solely due to the
non-bipartiteness of the lattice structure. We compare standard HMC (red) with tangent plane HMC
(blue) to show that the tangent plane obtains a good signal already at small number of configurations
Ncfg = 1000 in both systems. For 𝐶60 the sign problem is negligible and the real plane HMC gives
a good signal too. For finite chemical potential the sign problem aggravates as it imposes a second
source. We are currently working on this particular lattice geometry.

A.4 Conclusions

Simulating systems with strongly correlated electrons is a rather challenging task due to the innate
sign problem for doped systems. Current methods, like deformation onto Lefschetz thimbles, suffer
from a very difficult scaling in computational cost. We overcome this issue by identifying efficient
Neural Network architectures and incorporating them in a HMC algorithm. We present first studies
of doped Graphene sheets using this enhanced HMC and demonstrate a substantial improvement of
the signal, effectively mitigating the sign problem. Considering systems with increasing volume
illustrates some stability of this method for larger volumes. Further, preliminary simulation of
Fullerene 𝐶20 and 𝐶60 at vanishing chemical potential are shown. In the near future we will apply
the neural network enhanced HMC also at finite chemical potential.
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Appendix B

Moments of Parton Distributions
Functions from Lattice QCD at the
Physical Point

This appendix chapter is based on (not peer-reviewed) [6]:

Marcel Rodekamp, Michael Engelhardt, Jeremy R. Green, Stefan Krieg, Stefan Meinel, John W.
Negele, Andrew Pochinsky, and Sergey" Syritsyn. “Moments of Parton Distributions Functions
from Lattice QCD at the Physical Point.” In: 30th International Workshop on Deep-Inelastic
Scattering and Related Subjects. June 2023. arXiv: 2306.14431
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These proceedings are not peer-reviewed, but show preliminary results of the publication discussed
in chapter 5. A Lattice QCD calculation of the second Mellin moments of the nucleon unpolarized,
polarized, and transversity parton distribution functions. As before, the calculation is performed at
the physical pion mass with two different lattice spacings, and includes both zero and non-zero
nucleon momenta. A stronger emphasis, compared to chapter 5, lies in the identification of operators
that greatly reduce excited state contamination. Therefore, the set of operators does not completely
match the set of independent operators shown in chapter 5.

B.1 Introduction

Parton distribution functions (PDFs) have proved to be a valuable tool in describing the structure
of hadrons and making predictions for high-energy processes at hadron colliders. First-principles
calculations of PDFs are very difficult due to their non-perturbative nature. Lattice QCD provides
a way of calculating (non-perturbative) observables by introducing a four-dimensional Euclidean
hypercubic lattice to discretise the space-time, serving as a regulator. The path integral is then
calculated with a Monte Carlo algorithm.

In the past years the Lattice QCD community has made tremendous progress in calculating
PDFs by directly assessing their Bjorken-𝑥 dependence from the leading-twist contribution to
bilocal matrix elements at high momentum. In this work, we concentrate on the second Mellin
moment ⟨𝑥⟩ [36, 37, 43] via matrix elements of local twist-two operators, which does not require
large momenta to suppress higher-twist contributions and thus simplifies the numerical estimation.
We aim to understand the excited-state contamination and identify a set of matrix elements that
have particularly low contributions from exited states. This requires the study of matrix elements at
finite but small momenta as some have contributions only at non-zero momentum. The study of
forward matrix elements of local operators at non-zero momentum is uncommon but has been done
in references [139, 140, 141].

This contribution is organized as follows. In section B.2 we explain our analysis chain and discuss
in detail which operators are considered. In section B.3 we show our preliminary results of the
different steps of the analysis and discuss their significance in terms of excited-state contamination.
Last, in B.4 we summarize our findings.

B.2 Method

Moments of PDFs can be obtained by calculating forward matrix elements of local leading twist
operators [142, 143, 42, 45]

O𝑋 ≡ O𝑋{𝛼,𝜇} = 𝑞Γ
𝑋
{𝛼
↔
𝐷𝜇}𝑞, (B.1)

where 𝑋 = 𝑉, 𝐴, 𝑇 indicates the vector, axial or tensor channel leading to unpolarized, polarized or
transversity PDFs respectively. We symmetrize the indices and take the traceless part, denoted by
{𝛼, 𝜇}, and restrict ourselves to the isovector channel, O𝑋 (𝑞 = 𝑢) −O𝑋 (𝑞 = 𝑑), to avoid calculating
disconnected diagrams. The left-right acting covariant derivative

↔
𝐷 is constructed on the Euclidean

lattice by finite differences of neighbouring points connected by an appropriate gauge link𝑈𝜇 (x).
One can show that the forward matrix element is proportional to the desired moment ⟨𝑥⟩ [44, 36,
45]

M ≡ ⟨𝑁 (𝑝) |O𝑋{𝛼,𝜇} |𝑁 (𝑝)⟩ = ⟨𝑥⟩ 𝑢𝑁 (𝑝)Γ
𝑋
{𝛼 i 𝑝

𝜇}𝑢𝑁 (𝑝) , (B.2)

where 𝑝 is the nucleon’s 4-momentum.
In the continuum, the operators (B.1) are classified according to irreducible representations

of the Lorentz group, which in Euclidean space is replaced by the orthogonal group [42]. On
the lattice, the orthogonal group is further reduced to the hypercubic group 𝐻 (4). This explicit
breaking causes some operators to mix with lower-dimensional ones; however, for a one-derivative
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Figure B.1: Graphical representation of CO𝑋3pt (𝑇, 𝜏), a source nucleon inserted at time 𝑡 = 0 and
a sink nucleon removed at time 𝑡 = 𝑇 . A local leading twist operator (B.1) is inserted on a given
time slice 𝜏. The nucleons on the lattice are represented by interpolating operators while O𝑋 is
determined by finite differences connected with gauge links.

operator as used here this does not happen. Still, the Euclidean irreducible representations to which
our operators belong split into multiple hypercubic irreps; we use the typical notation where 𝜏 (𝑏)𝑎

denotes the 𝑎th 𝑏-dimensional irrep. Each of the latter has a different renormalization factor, so we
construct operators with definite hypercubic irreducible representation to keep the renormalization
diagonal [42]. In practice this means for each 𝜏 (𝑏)𝑎 we have to calculate the renomalization factor
𝑍
𝜏
(𝑏)
𝑎

to multiply matrix elements of an operator that transforms irreducibly under it, consequently
we denote 𝑍O𝑋 ≡ 𝑍𝜏 (𝑏)𝑎 .

The matrix element of (B.2) can be obtained from the lattice by considering ratios of three-point
and two-point correlation functions [44, 45]. The two-point correlation function C2pt (𝜏) measures
the correlation of a nucleon source and a nucleon sink separated by a time 𝜏, while the three-point
correlation function CO𝑋3pt (𝑇, 𝜏) separates the source and sink nucleons by a time 𝑇 and inserts an
operator of interest, here O𝑋, at time 𝜏. For a graphical representation consider figure B.1. The
matrix element is then obtained in the limit

M = lim
𝑇−𝜏,𝜏→∞

𝑅(𝑇, 𝜏) ≡ lim
𝑇−𝜏,𝜏→∞

CO𝑋3pt (𝑇, 𝜏)
C2pt (𝑇)

. (B.3)

Doing a spectral analysis of this ratio reveals the matrix element of the ground state

𝑅(𝑇, 𝜏) =M + Excited States. (B.4)

Expanding further, including the first excited state, shows the dominant excited-state contamination

M 1 + 𝑐1𝑒
− 𝑇2 Δ𝐸 cosh [(𝑇/2 − 𝜏) Δ𝐸] + 𝑐2𝑒

−𝑇Δ𝐸

1 + 𝑐3𝑒−𝑇Δ𝐸
, (B.5)

where we use Δ𝐸 = 𝐸1−𝐸0. Naturally, one would consider large 𝑇, 𝜏 approaching the limit of (B.3).
The statistical noise increases with 𝑇 , implying increased numerical costs for this approach. The
constants 𝑐𝑖 depend on the operator O𝑋; thus, if they appear to be small or obey some symmetry,
the excited-state contamination of the matrix element is further reduced.

Considering the sum of ratios

𝑆(𝑇, 𝜏skip) = 𝑎
𝑇−𝜏skip∑︁
𝜏=𝜏skip

𝑅(𝑇, 𝜏) =M
(
𝑇 − 𝜏skip

)
+ 𝑐 + Excited States, (B.6)

excited-state contamination is exponentially suppressed with 𝑇 compared to 𝑇/2 for the ratios
themselves [145, 146]. Increasing 𝜏skip reduces excited-state contamination, here typically a value
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of 𝜏skip/𝑎 = 1, 2, 3 is enough. In order to extract the matrix element from the ratio sums, up to excited
states, we can either fit the slope according to (B.6) or use finite differences

M =
𝑆(𝑇 + 𝛿, 𝜏skip) − 𝑆(𝑇, 𝜏skip)

𝛿
. (B.7)

Due to the available data we use a combination of 𝛿/𝑎 ∈ {1, 2, 3} depending on whether a neighbour
𝑇 + 𝛿 is available.

Having the basic quantities of interest, we can summarize the analysis as follows. First estimate
the ratios 𝑅(𝑇, 𝜏) and ratio sums 𝑆(𝑇, 𝜏skip). Currently, we extract matrix elementsM in two ways.
First, fitting the slope of 𝑆(𝑇, 𝜏skip) at fixed 𝜏skip limiting 𝑇 ≥ 𝑇 ′ for various minimal source-sink
separations 𝑇 ′. Second, extracting the slope via finite differences at a source-sink separation 𝑇 = 𝑇 ′.
A matrix element extracted with either those is denoted byM|𝑇 ′ ,𝔪 where 𝔪 denotes one of the two
above methods. For both methods, as we increase 𝑇 ′ excited states are expected to decay. Dividing
the kinematic factor results in a 𝑇 ′-dependent moment for a given operator O𝑋 and momentum 𝑝

using the matrix element extraction method 𝔪

𝔛O𝑋 , 𝑝,𝔪 (𝑇 ′) =
M|𝑇 ′ ,𝔪

𝑢𝑁 (𝑝)Γ
𝑋
{𝛼 i 𝑝

𝜇}𝑢𝑁 (𝑝)
. (B.8)

To simplify the following equations, we define a compound index 𝑗 =
(
O𝑋, 𝑝,𝔪

)
that runs over all

operators and momenta with nonzero kinematic factors as well as the different methods to obtain
the matrix element. Determining the renormalization factors in RI-(S)MOM and matching it to
MS(2 GeV) allows us to express the renormalized moment 𝔛ren

𝑗
(𝑇 ′) = 𝑍O𝑋 · 𝔛 𝑗 (𝑇 ′). With these

we define the central value as weighted average of the different results

⟨𝑥⟩ren =
∑︁

𝑗 ,𝑇 ′≥𝑇 𝑗plat

𝔚 𝑗 (𝑇 ′)𝔛ren
𝑗 (𝑇 ′). (B.9)

Here 𝑇 𝑗plat denotes the smallest source-sink separation such that 𝔛 𝑗 (𝑇 ′) agree for all 𝑇 ′ ≥ 𝑇 𝑗plat.
The weights 𝔚 𝑗 (𝑇 ′) ∝ 1/𝜎2

𝑗
(𝑇 ′ ) are normalised such that they sum to 1. The used variances are

estimated via bootstrap over 𝔛
𝑗
(𝑇 ′) and the errors of the renormalization constants are propagated.

Last we estimate a systematic error by taking the weighted standard deviation over the different
results

𝜎2
𝑠𝑦𝑠𝑡 =

∑︁
𝑗 ,𝑇 ′≥𝑇 𝑗plat

𝔚 𝑗 (𝑇 ′)
[
𝔛ren
𝑗 (𝑇 ′) − ⟨𝑥⟩

ren
]2
. (B.10)

B.3 Results

We use a tree-level Symanzik-improved gauge action with 2+1 flavour tree-level improved Wilson
Clover fermions coupling via 2-level HEX-smearing. The details can be found in [133, 134, 50]
and relevant parameters are summarized in table B.1. Two ensembles, coarse and fine, have
been generated at the physical pion mass corresponding to lattice spacings of 0.1163(4) fm and
0.0926(6) fm respectively. On each ensemble two-point and three-point correlation functions
are calculated with source-sink separations ranging from ≈ 0.3 fm to 1.4 fm and ≈ 0.9 fm to
≈ 1.5 fm. For each ensemble two momenta are chosen; ®𝑝 = (𝑝𝑥 , 0, 0) with 𝑝𝑥 = 0,−2[2𝜋/𝐿] and
𝑝𝑥 = 0,−1[2𝜋/𝐿] respectively.

Figures B.2 to B.4 show the different steps of the analysis. For a given channel X, the
figures B.2a and B.2b show results using one possible operator O𝑋{𝛼,𝜇} . Here we multiply with
the kinematic factor 𝑅(𝑇, 𝜏) = 1/𝑢𝑁 (𝑝)Γ𝑋{𝛼 i 𝑝

𝜇}𝑢𝑁 (𝑝) · 𝑅(𝑇, 𝜏) such that a plateau corresponds to
the bare moment. These plots omit the largest source sink separation due to its enormous
statistical uncertainty. Two different operators O𝑋{𝛼,𝜇} are used for each channel 𝑋 going from
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Ensemble Size 𝛽 𝑎[fm] 𝑚𝜋 [MeV] 𝑚𝜋𝐿 𝑇/𝑎 𝑝𝑥 [2𝜋/𝐿] Ncfg

Coarse 484 3.31 0.1163(4) 136(2) 3.9 3, 4, 5, 6, 7, 8, 10, 12 0,−2 212
Fine 644 3.5 0.0926(6) 133(1) 4.0 10, 13, 16 0,−1 427

Table B.1: Details of the used ensembles. The ensembles are at the physical pion mass,𝑚𝜋 ≈ 𝑚𝑝ℎ𝑦𝑠𝜋 .
A larger and a smaller lattice spacing, labelled as "Coarse" and "Fine" respectively, are available.
The ensembles are generated with a tree-level Symanzik-improved gauge action with 2+1 flavour
tree-level improved Wilson Clover fermions coupled via 2-level HEX-smearing [133, 134, 50].
Furthermore, the available source-sink separations (𝑇) and momenta (𝑝𝑥) which are used in the
calculation of the ratios, equation (B.3), are displayed.

figure B.2a to B.2b. For the axial channel (𝑋 = 𝐴) both operators transform under 𝜏 (6)4 . The lower
excited-state contamination for some operators can be deduced directly from these figures as B.2a
obey the cosh behaviour of (B.5) while B.2b are perfectly flat within uncertainty. Notably, those
operators have a contribution only at finite momentum (𝑝𝑥 ≠ 0 here) which increases the statistical
noise.

A similar rescaling has been done for the ratio sums 𝑆(𝑇, 𝜏skip) = 1/𝑢𝑁 (𝑝)Γ𝑋{𝛼 i 𝑝
𝜇}𝑢𝑁 (𝑝) ·𝑆(𝑇, 𝜏skip)

in figure B.3. The exited state contamination is indicated by the slight curvature though much more
obscured compared to the ratios. The slopes of these lines are used in the current analysis shown in
figure B.4. In future work we want to include a 2-state analysis as in (B.5), improving on the central
value (B.9) as well as the systematic error estimation (B.10).

In Figure B.4 the gray points correspond to the different renormalized moments 𝔛ren
𝑗
(𝑇 ′)

from finite differences plotted against 𝑇 ′ but slightly displaced to increase readability. The blue
points represent the preliminary result, computed using (B.9). The inner errorbars represent the
statistical – bootstrap – uncertainty while the outer ones add the estimate of systematic errors,√︃
𝜎2
𝑠𝑡𝑎𝑡 + 𝜎2

𝑠𝑦𝑠𝑡 . The upper and lower row collect results from the coarse and fine ensemble
respectively. Encouragingly, the central values agree within the uncertainties.

B.4 Summary

We calculate the second Mellin moment ⟨𝑥⟩ of axial, vector and tensor PDFs from lattice QCD
with two lattice spacings at the physical pion mass. The study includes nucleon matrix elements at
zero and finite momentum, boosted in the 𝑥-direction. We identified a set operators that contribute
only at finite momentum and have particularly low excited-state contamination. For the future, we
are working on a direct 2-state analysis of the ratios to improve the quantitative analysis of the
excited-state contamination.
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Figure B.2: Ratios, cf. eq. (B.3), for the coarse ensemble. Different source-sink separations 𝑇 are
shown in different colours and the two momenta, in B.2a, are distinguished by hollow and filled
markers. Different sets of operators were chosen for the two subfigures.
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Figure B.3: ratio sums 𝑆(𝑇, 𝜏skip) on the coarse lattice. The chosen operators O𝑋 are the same as
in B.2a. Each 𝑆(𝑇, 𝜏skip) is plotted at fixed 𝜏skip, indicated by colour, over different source-sink
separations. As in B.2a different momenta are displayed with hollow and filled markers.
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Figure B.4: Results for the renormalized moments computed from the ratio sums (B.6). Moments
are computed from finite differences at fixed 𝑇 ′ and 𝜏skip = 1. The grey points represent 𝔛ren
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(𝑇 ′).

The moments are plotted against 𝑇 ′ and slightly displaced for clarity. The red points represent the
preliminary result obtained using (B.9). The inner and outer errorbars indicate statistical and total
uncertainty respectively.
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