001030415 001__ 1030415
001030415 005__ 20240905204428.0
001030415 037__ $$aFZJ-2024-05288
001030415 041__ $$aEnglish
001030415 1001_ $$0P:(DE-Juel1)164297$$aMeven, Martin$$b0$$eCorresponding author$$ufzj
001030415 1112_ $$aMLZ Conference 2024: Neutrons for Energy Storage$$cMunich$$d2024-06-04 - 2024-06-07$$gNfES$$wGermany
001030415 245__ $$aSingle Crystal Diffraction Studies on Energy Storage Materials with Hot Neutrons on HEiDi
001030415 260__ $$c2024
001030415 3367_ $$033$$2EndNote$$aConference Paper
001030415 3367_ $$2DataCite$$aOther
001030415 3367_ $$2BibTeX$$aINPROCEEDINGS
001030415 3367_ $$2DRIVER$$aconferenceObject
001030415 3367_ $$2ORCID$$aLECTURE_SPEECH
001030415 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1725528972_9769$$xAfter Call
001030415 520__ $$aThe single crystal diffractometer HEiDi (jointly operated by RWTH Aachen University and the Forschungszentrum Jülich) at the research neutron source FRM II at the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching offers a broad spectrum of thermal and hot neutrons, high neutron flux, high resolution and a large access to reciprocal space, low absorption and high sensitivity for light elements. Especially its last features makes HEiDi a valuable tool for extended studies on different materials and components relevant for applications in the field of energy research. Lithium is one of the most important ingredients of nowadays batteries. Further improvements depend on better components, e.g. those that offer higher energy densities and higher operational reliability. Solid-state electrolytes, based on the cubic garnet Li$_6$La$_3$ZrTaO$_{12}$ (LLZTO), are potential candidates and have become the focus of research recently. A comprehensive T dependent study using single crystal neutron and x-ray diffraction technique (2.5 K ≤ T ≤ 873 K) delivers new insights in the mobility and pathways of the Li ions in this complex structure [1, 2, 3].Another important example are oxygen diffusion pathways in various brownmillerites, like Nd$_2$NiO$_{4+\delta}$ or Pr$_2$NiO$_{4+\delta}$ [4]. The introduction of interstitial oxygen affects not only the electric and structural properties but also the magnetic ones of these compounds. Within a joint French-German project (DFG funding ME 3488/2-1), a special mirror furnace –built at the FRM II –allowed detailed studies on the oxygen behavior up to 1300 K and in various sample atmospheres with different oxygen concentrations and pressures. Other neutron studies studies were performed down to ~2.5K inorder to get insights into the relationship between (weak) oxygen doping and magnetic order [5, 6] These experiments were combined with elastic and inelastic synchrotron radiation to gain a complete overview of the oxygen (dis)orders and phase transitions.[1] G.J. Redhammer, M. Meven, S. Ganschow, G. Tippelt and D. Rettenwander; Acta Cryst. B 77(2021), 123-130; https://doi.org/10.1107/S2052520620016145[2] G.J. Redhammer, P. Badami, M. Meven, S. Ganschow, S. Berendts, G. Tippelt, and D. Rettenwander; ACS Appl. Mater. Interfaces (2021), 350–359; https://doi.org/10.1021/acsami.0c16016[3] M. Philipp, B. Gadermaier, P. Posch, I. Hanzu, S. Ganschow, M. Meven, D. Rettenwander, G.J. Redhammer, H. Martin R. Wilkening; Adv. Mater. Interfaces 7 (2020), 200450; https://doi.org/10.1002/admi.202000450[4] C. Hareesh, M. Ceretti, P. Papet, A. Bosak, M. Meven and W. Paulus; Crystals 13(12), 1670; https://doi.org/10.3390/cryst13121670[5] S.R. Maity, M. Ceretti, L. Keller, J. Schefer, M. Meven, E. Pomjakushina, and W. Paulus; Phys. Rev. Materials 5 (2021), 014401; https://doi.org/10.1103/PhysRevMaterials.5.014401[6] S.R. Maity, M. Ceretti, L. Keller, J. Schefer, T. Shang, E. Pomjakushina, M. Meven, D. Sheptyakov, A. Cervellino and W. Paulus; Phys. Rev. Materials 3 (2019), 083604; https://doi.org/10.1103/PhysRevMaterials.3.083604
001030415 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001030415 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001030415 536__ $$0G:(GEPRIS)431446509$$aDFG project 431446509 - Untersuchung der Sauerstoff-Diffusionsmechanismen in Pr2NiO4+d unter in situ-Bedingungen mittels Neutronenstreuung: Wechselwirkung zwischen Struktur und Gitterdynamik (431446509)$$c431446509$$x2
001030415 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
001030415 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
001030415 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x2
001030415 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001030415 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x1
001030415 693__ $$0EXP:(DE-MLZ)HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)HEIDI-20140101$$6EXP:(DE-MLZ)SR9b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eHEiDi: Single crystal diffractometer on hot source$$fSR9b$$x0
001030415 7001_ $$0P:(DE-HGF)0$$aRedhammer, G.$$b1
001030415 7001_ $$0P:(DE-HGF)0$$aRettenwander, D.$$b2
001030415 7001_ $$0P:(DE-HGF)0$$aCeretti, M.$$b3
001030415 7001_ $$0P:(DE-HGF)0$$aPaulus, W.$$b4
001030415 7001_ $$0P:(DE-HGF)0$$aBosak, A.$$b5
001030415 8564_ $$uhttps://indico.frm2.tum.de/event/461/
001030415 8564_ $$uhttps://juser.fz-juelich.de/record/1030415/files/my-abstracts.pdf$$yRestricted
001030415 8564_ $$uhttps://juser.fz-juelich.de/record/1030415/files/my-abstracts.gif?subformat=icon$$xicon$$yRestricted
001030415 8564_ $$uhttps://juser.fz-juelich.de/record/1030415/files/my-abstracts.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001030415 8564_ $$uhttps://juser.fz-juelich.de/record/1030415/files/my-abstracts.jpg?subformat=icon-180$$xicon-180$$yRestricted
001030415 8564_ $$uhttps://juser.fz-juelich.de/record/1030415/files/my-abstracts.jpg?subformat=icon-640$$xicon-640$$yRestricted
001030415 909CO $$ooai:juser.fz-juelich.de:1030415$$pVDB:MLZ$$pVDB
001030415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164297$$aForschungszentrum Jülich$$b0$$kFZJ
001030415 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164297$$aRWTH Aachen$$b0$$kRWTH
001030415 9101_ $$0I:(DE-588b)4597118-3$$6P:(DE-Juel1)164297$$aHeinz Maier-Leibnitz Zentrum$$b0$$kMLZ
001030415 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001030415 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001030415 9141_ $$y2024
001030415 920__ $$lyes
001030415 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
001030415 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
001030415 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001030415 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x3
001030415 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x4
001030415 980__ $$aconf
001030415 980__ $$aVDB
001030415 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001030415 980__ $$aI:(DE-588b)4597118-3
001030415 980__ $$aI:(DE-82)080009_20140620
001030415 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001030415 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001030415 980__ $$aUNRESTRICTED