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A B S T R A C T

Aquaporin-4 (AQP4) is hypothesized to be a component of the glymphatic system, a pathway for removing brain 
interstitial solutes like amyloid-β (Aβ). Evidence exists that genetic variation of AQP4 impacts Aβ clearance, 
clinical outcome in Alzheimer’s disease as well as sleep measures. We examined whether a risk score calculated 
from several AQP4 single-nucleotide polymorphisms (SNPs) is related to Aβ neuropathology in older cognitively 
unimpaired white individuals. We used a machine learning approach and explainable artificial intelligence to 
extract information on synergistic effects of AQP4 SNPs on brain amyloid burden from the ADNI cohort. From 
this information, we formulated a sex-specific AQP4 SNP-based risk score and evaluated it using data from the 
screening process of the A4 study. We found in both cohorts significant associations of the risk score with brain 
amyloid burden. The results support the hypothesis of an involvement of the glymphatic system, and particularly 
AQP4, in brain amyloid aggregation pathology. They suggest also that different AQP4 SNPs exert a synergistic 
effect on the build-up of brain amyloid burden.

1. Introduction

The water channel aquaporin 4 (AQP4) is a protein which is essential 
for the regulation of water homeostasis in the brain (Salman et al., 
2022). AQP4 is highly expressed in astrocytes, mainly polarized on their 
perivascular endfeet. It is considered to play a crucial role in the 
glymphatic system, a brain-wide perivascular network which is believed 
to facilitate the clearance of waste products like amyloid-β (Aβ) from the 
brain (Iliff et al., 2012; Valenza et al., 2020). Accumulation of Aβ, fol
lowed by neuritic plaque formation, is one of the neuropathological 
hallmarks of Alzheimer’s disease (AD). An impaired ability to clear Aβ 
from the brain via the glymphatic system, the brain’s analogue to the 

lymphatic system of the body, could contribute to its accumulation 
(Nedergaard and Goldman, 2020). The glymphatic system is mostly 
active during sleep, and it was shown in mice that glymphatic influx and 
clearance exhibit endogenous, circadian rhythms, supported at least in 
part via rhythmic localization of AQP4 to the perivascular endfeet of 
astrocytes (Hablitz et al., 2020).

In a human postmortem study it was shown that AQP4 expression 
increased in the aging brain, and a loss of perivascular localization was 
significantly associated with AD status and increased Aβ burden. How
ever, perivascular AQP4 localization was preserved among the eldest 
individuals who remained cognitively intact (Simon et al., 2022; Zep
penfeld et al., 2017), suggesting that a loss of perivascular AQP4 
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localization might contribute to the development of AD pathology. Be
sides glymphatic fluid clearance, increasing evidence suggests that 
AQP4 is also involved in brain inflammation, synaptic plasticity and 
memory formation, as well as regulation of extracellular space volume 
and potassium homeostasis (Hubbard et al., 2018; Mader and Brimberg, 
2019).

AQP4 is encoded by the AQP4 gene. Genetic variation of AQP4 may 
impact the expression and functionality of the water channels and 
therefore the clearance of Aβ. For example, Woo et al. (2018) examined 
the functionality of one AQP4 single-nucleotide polymorphism (SNP) in 
modulating the expression level of AQP4 in an in vitro luciferase reporter 
assay, and found this SNP to cause AQP4 expression-level changes.

Recent evidence indicates that genetic variation of AQP4 is associ
ated with measures of dementia. Burfeind et al. (2017) have studied the 
effects of five AQP4 SNPs in cognition and disease progression of AD, 
and have found associations with altered rates of cognitive decline after 
AD diagnosis. Two SNPs were associated with slower cognitive decline, 
two with more rapid cognitive decline, and one was associated with 
slower cognitive but faster functional decline. The authors also report a 
possible synergistic effect of the AQP4 SNPs. Chandra et al. (2021) have 
examined eighteen AQP4 SNPs, and found one which was associated 
with decreased brain amyloid load, measured as uptake of the amyloid 
tracer [18F]Florbetapir, as well as one with increased amyloid load, 
disease stage progression and cognitive decline in Aβ-positive late mild 
cognitive impairment (MCI) and AD patients. Fang et al. (2022) have 
studied the clinical implication of eleven AQP4 SNPs in Parkinson’s 
disease (PD). They have found one SNP which was associated with 
slower dementia conversion, better performance in cognitive tests and 
lower Aβ deposition, and one SNP with faster progression to MCI and 
worse performance in cognitive tests. One of the SNPs also modulated an 
association of REM sleep behaviour disorder and the biomarker CSF 
Aβ42. Overall, these findings suggests that AQP4 indeed modulates 
cognitive disease trajectories in AD and MCI patients, potentially 
through moderating the build-up of disease pathology.

Recent work also describes a link between AD, sleep and AQP4. 
Rainey-Smith et al. (2018) report an association of AQP4 SNPs with 
self-reported sleep quality and a moderation of the relationship between 
sleep latency, duration, and brain Aβ burden. Ulv Larsen et al. (2020)
showed that a haplotype of AQP4 SNPs, containing one of the SNPs 
which was associated with cognition and function in Burfeind et al. 
(2017), is also associated with slow wave energy, a combined measure of 
sleep intensity and duration. Despite these findings, even the latest 
genome-wide association studies (GWAS) did not identify AQP4 as a risk 
locus for Alzheimer’s disease (Bellenguez et al., 2022), suggesting a 
potential involvement of AQP4 variants rather in endophenotypes 
related to AD like amyloid burden in the brain.

Furthermore, in complex diseases like AD, the disease risk is 
conveyed by a number of SNPs each one with small effect on disease 
susceptibility, which led to the formulation of polygenic risk scores 
(PRS) as a successful approach in AD risk prediction (de Rojas et al., 
2021). However, the limitations of PRS are the arbitrary significance 
thresholds for SNP selection as well as multiple testing issues (Baker and 
Escott-Price, 2020). In addition, PRS accounts only for the independent 
risk effects across multiple loci and ignores epistasis, the potentially 
synergistic interaction effect between genetic variants (Cordell, 2002). 
However, existing strategies to explore epistasis in diseases like AD are 
not powerful enough due to the large number of statistical tests that 
need to be performed (Raghavan and Tosto, 2017).

Based on these considerations, it may be hypothesized that poten
tially relatively small effects of single AQP4 SNPs may add up to a 
relevant impact in their combination. Such complex synergistic/inter
active effects may be better detected by means of machine learning (ML) 
models as compared to conventional approaches. In contrast to the 
linear models used in GWAS, ML models based on decision trees like 
random forests or gradient boosted trees have an inherent ability to 
detect interactions between features, making them an excellent 

candidate for detecting SNP-SNP interactions even beyond only pairwise 
interactions (Johnsen et al., 2021).

Recently, a method of explainable artificial intelligence (AI) named 
“SHapley Additive exPlanation” (SHAP) has been introduced which 
computes explanations of tree-based ML models. It is based on game 
theory and has the ability to directly measure local feature interaction 
effects (Lundberg et al., 2020). SHAP provides also tools for under
standing the global model structure based on combining the local ex
planations, making this method ideal for evaluating multiple SNP 
combinations and their importance and effects.

In this study, we tested the hypothesis that AQP4 SNPs show a syn
ergistic effect on brain amyloid burden. We used a parallel tree boosting 
method, XGBoost (“eXtreme Gradient Boosting”) (Chen and Guestrin, 
2016) with the minor allele carrier status of AQP4 SNPs as features, to 
model interactions between SNPs as well as their individual effects on 
brain amyloid burden, with data from 324 participants of the Alz
heimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni. 
usc.edu). We used explanations derived from SHAP to formulate a 
SNP-based risk score, considering protective as well as deleterious ef
fects of the SNPs, and evaluated the risk score using a causal modelling 
approach (Arnold et al., 2020) based on multiple linear regression both 
in ADNI as well as in an independent cohort, data from 2987 cognitively 
unimpaired participants of the screening process of the A4 study 
(a4study.org) (Sperling et al., 2014).

2. Materials and methods

Data used in this study were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The pri
mary goal of ADNI was to test whether neuroimaging (serial magnetic 
resonance imaging (MRI), positron emission tomography (PET)) 
together with biological markers, clinical and neuropsychological 
assessment can be combined to measure the progression from cogni
tively normal (CN) to mild cognitive impairment (MCI) and Alzheimer’s 
disease (AD). In 2013, whole genome sequencing (WGS) was performed 
on 818 participants (Alzheimer’s Disease Neuroimaging Initiative 
(ADNI), 2013).

Further, we used data of the Anti-Amyloid Treatment in Asymp
tomatic Alzheimer’s (A4) study (a4study.org). The A4 study is a sec
ondary prevention trial in preclinical Alzheimer’s disease, aiming to 
slow cognitive decline associated with brain amyloid accumulation in 
clinically normal older individuals (Sperling et al., 2014). Cognitively 
unimpaired older individuals were selected as participants, based on 
evidence of amyloid accumulation on screening PET scans. Participants 
without evidence of elevated amyloid accumulation were eligible to 
screen for the Longitudinal Evaluation of Amyloid Risk and Neuro
degeneration (LEARN) Study. This companion observational study 
serves as a longitudinal comparison group with the treatment and pla
cebo Aβ+ arms randomized in the A4 study (Sperling et al., 2020). We 
used the A4/LEARN pre-randomization data acquired in the screening 
process with imputed genetic data as from November 23, 2020.

2.1. Study participants

From the ADNI cohort, we considered only participants with whole 
genome sequencing (WGS) data of AQP4 SNPs as well as completed 
[18F]Florbetapir PET scans available. Furthermore, to ensure an ethni
cally homogeneous group, we excluded 10 (5 female, 5 male, no sig
nificant difference in age) out of 334 participants with an ethnic 
category different to “Not Hispanic or Latino”.

Depending on the period since their enrollment, ADNI participants 
had several follow-up visits. At the time of enrollment, the diagnosis was 
not exceeding mild or early forms of dementia. Therefore, we decided to 
use data from the last visit available, to ensure that we consider the 
maximum bandwidth of disease from cognitively normal to severe forms 
of AD. Consequently, participants were older on average and were more 
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often diagnosed with AD compared to baseline. Overall, N= 324 par
ticipants were included.

From the A4/LEARN cohort, we also considered only participants 
with data of AQP4 SNPs available, and a completed [18F]Florbetapir PET 
scan. We also restricted the ethnicity to “Not Hispanic or Latino” by 
excluding 20 (10 female, 10 male, no significant difference in age) 
participants with an ethnic category different to “Not Hispanic or 
Latino”. Overall, N= 2987 participants were included.

For the assessment of significant differences in age of the two cohorts 
we performed an independent samples t-test using SciPy (https://scipy. 
org). For the assessment of significant differences in the percentage of 
APOE ε4 carriers and Aβ positives we used a chi-square test of inde
pendence of variables, also using SciPy.

2.2. AQP4 SNPs

Candidate AQP4 SNPs were collected from the database of genetic 
variation of the National Center for Biotechnology Information (NCBI), 
dbSNP (Sherry et al., 2001) (https://www.ncbi.nlm.nih.gov/snp/). 31 
AQP4 SNPs were selected based on their availability in both ADNI and 
A4/LEARN after quality control procedures which included a minor 
allele frequency of greater than 5 %, and Hardy-Weinberg equilibrium 
(p < 0.001), using PLINK 2.0 (Chang et al., 2015) (https://www.cog-
genomics.org/plink/2.0). We identified 3 groups of SNPs with high 
correlation (Pearson correlation coefficient, r > 0.96) and kept one SNP 
as representative for a group which either had a previously reported 
association in the context of AD or had the highest correlations with all 
other group members. Finally, 19 SNPs were used for the analysis. The 
decision to keep correlated SNPs up to an r2 of 0.92 was based on evi
dence that SNP-SNP pairs in high linkage disequilibrium can be signif
icantly associated with phenotypes due to epistatic effects (Singhal 
et al., 2023), so that cases where two correlated SNPs differ from each 
other might contain valuable information. Details of the SNPs which 
were used, as well as previously reported associations, are shown in 
Table 1. Fig. 1 shows an illustration of the position of the SNPs within 
the AQP4 gene. With our SNP selection we cover the entire locus of the 
AQP4 gene.

Finally, we assigned a “carrier” status to participants which are 
either homozygous in the minor allele or heterozygous, and a “non- 
carrier” status to participants which are homozygous in the common 
allele.

2.3. Amyloid PET imaging

For the ADNI cohort, brain amyloid burden was assessed using a 
region of interest based analysis of [18F]Florbetapir (formerly AV45) 
PET imaging data, which is available in a spreadsheet format from ADNI 
(Jagust et al., 2015). In short, after the injection of approximately 
10 mCi as an intravenous bolus, participants are scanned from 50 to 
70 min after injection in time frames of 5 min each. Quality control and 
preprocessing of the imaging data included visual inspection, correction 
for motion between the time frames, averaging of the motion corrected 
time frames to a single frame, rigid coregistration to a standard grid and 
intensity normalization using a reference region. To account for the 
various PET scanners used in the study, data were homogenized using a 
scanner-specific smoothing kernel. From the available spreadsheet, we 
used the summary [18F]Florbetapir cortical standardized uptake value 
ratios (SUVR) normalized by whole cerebellum. From these values, 
global Aβ positivity in individual participants was determined by 
applying a cutoff value of 1.11, as described in the internal ADNI 
“Amyloid PET Processing Methods” document.

For the assessment of brain amyloid burden in the A4/LEARN study, 
participants also received an injection of 10 mCi [18F]Florbetapir and 
were scanned 50–70 min after injection. Amyloid burden is also 
measured as mean cortical SUVR with a whole cerebellar reference re
gion, and is available as a spreadsheed from the A4/LEARN study. To 

Table 1 
AQP-4 SNPs investigated in the current study.

SNP Consequence Previously reported associations

rs162005 Intron
rs9961118 2KB upstream
rs72878794 2KB upstream − Amyloid burden and clinical outcome in AD 

(Chandra et al., 2021)
− Sudden infant death syndrome (Opdal et al., 

2017)
rs151244 2KB upstream − Amyloid burden and clinical outcome in AD 

(Chandra et al., 2021)
rs162006 2KB upstream
rs2075575 2KB upstream − Parkinson’s disease (Sun et al., 2023)

− Leukoaraiosis (Yadav et al., 2014)
− Sudden infant death syndrome (Eidahl et al., 

2021; Opdal et al., 2010)
rs72878787 2KB upstream
rs162008 5‘-UTR − Brain plasticity and learning (Woo et al., 

2018)
− Slow wave energy regulation in human NREM 

sleep (Ulv Larsen et al., 2020)
rs3875089 Intron − Moderation of the relationship between sleep 

and brain Aβ-amyloid burden (Rainey-Smith 
et al., 2018)

− Traumatic brain injury outcome (Dardiotis 
et al., 2014)

− Cognitive decline after AD diagnosis (Burfeind 
et al., 2017)

rs4800773 Intron
rs3763040 Intron − Cognitive decline after AD diagnosis (Burfeind 

et al., 2017)
− Cognitive performance in Parkinson’s disease 

(Fang et al., 2022)
rs162009 Intron − Cognitive performance (Fang et al., 2022) and 

brain activity (Jiang et al., 2023) in 
Parkinson’s disease

rs35248760 Synonymous − SNPs with high correlation: rs72878776, 
rs67207056, rs60565102, rs55875625, 
rs12968026, rs11661256(all Intron), 
rs1058427 (3‘-UTR)

− rs72878776 moderates the relationship 
between sleep and brain Aβ-amyloid burden 
(Rainey-Smith et al., 2018)

− rs1058427 associated with intracerebral 
haemorrhage (ICH) and perihematomal 
oedema (PHE) volume (Appelboom et al., 
2015)

rs71353406 Intron − SNPs with high correlation: rs14393, 
rs3763043 (all 3‘-UTR)

− Moderation of the relationship between sleep 
and brain Aβ-amyloid burden (Rainey-Smith 
et al., 2018)

− Traumatic brain injury outcome (Dardiotis 
et al., 2014) (rs3763043)

− Cognitive performance in Parkinson’s disease 
(Fang et al., 2022) (rs3763043)

− Cognitive decline after AD diagnosis (Burfeind 
et al., 2017)

− Schizophrenia in the Southern Chinese Han 
population (Wu et al., 2020) (rs3763043)

rs71353405 Intron
rs335930 Intron − Slow wave energy regulation in human NREM 

sleep (Ulv Larsen et al., 2020)
rs1058424 3‘-UTR − Schizophrenia in the Southern Chinese Han 

population (Wu et al., 2020)
rs7240333 3‘-UTR − Cognitive performance in Parkinson’s disease 

(Fang et al., 2022)
rs16942851 500B 

Downstream
− SNPs with high correlation: rs455671, 

rs335931 (all Intron), rs335929 (3‘-UTR)
− Slow wave energy regulation in human NREM 

sleep (Ulv Larsen et al., 2020)
− More rapid decline in Clinical Dementia 

Rating, but slower decline in Logical Memory 
and Digit Symbol tests performance (Burfeind 
et al., 2017) (rs335929)
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maintain consistency with ADNI data, Aβ positivity was determined by 
applying a general cutoff value of 1.11, as opposed to the A4/LEARN 
procedure where SUVR values between 1.10 and 1.15 were considered 
as amyloid positive only when a visual read was also deemed positive by 
a consensus determination involving two readers (Sperling et al., 2020).

2.4. Feature engineering and estimation of risk score

Decision tree ensembles are ideal to capture complex data de
pendencies. To detect synergistic or interaction effects of the AQP4 SNPs 
we have used sex, APOE4 status expressed as number of ε4 alleles, and 
the status of the 19 AQP4 SNPs from ADNI as features, as well as brain 
amyloid burden as target for a regression task using XGBoost 1.7.6 
(“Extreme Gradient Boosting”) (Chen and Guestrin, 2016) (https://gi
thub.com/dmlc/xgboost). This algorithm uses many decision trees as 
weak learners and combines them to a strong learner by minimizing a 
loss function. It is known as a robust algorithm with excellent perfor
mance in a variety of applications. Since we did not aim for predictive 
modelling and model generalizability, we performed no further model 
tuning or hyperparameter optimization. For model evaluation we used 
5-fold cross validation (scikit-learn 1.2.2) with root mean squared error 
(RMSE) and mean absolute error (MAE) as scoring parameters.

We have used the data from the ADNI cohort for this step because 
ADNI has an equal share of amyloid positive and negative participants 
and covers all stages of AD, from cognitively normal to dementia, in 
contrast to A4/LEARN with only cognitively unimpaired participants. 
Moreover, the A4/LEARN cohort is significantly younger than the ADNI 
cohort. Some participants might not yet have reached detectable amy
loid levels, which would be false information for the model. Restricting 
the A4/LEARN cohort to participants older than 74 to pass the age of 
detectable amyloid onset (Bilgel et al., 2016) would result again in a 
small dataset, since only 27 % of the participants are older than 74.

The prevalence of Alzheimer’s disease is higher in women compared 
to men (Niu et al., 2017). Moreover, AQP4 gene regulation has been 
found to be affected by sex-biasing factors (Blencowe et al., 2022), and it 
was also shown that AQP4 regulates the effects of ovarian hormones on 
neurotransmission (Sun et al., 2007). Therefore, we decided to perform 
the modelling separately for females and males to interrogate potential 
biological sex differences.

Next, we used the TreeExplainer of the SHAP package (Lundberg 
et al., 2020; Lundberg and Lee, 2017) (https://github.com/slund
berg/shap, version 0.42.0) to explain the model decisions. The 
TreeExplainer can explain each prediction with respect to local feature 
importance and feature effect towards the predicted value, starting from 
the average of the whole cohort, as well as feature interaction effects. 
Local explanations can also be combined to understand the global model 
structure. Since the decision tree model that we used already considers 
correlations and interactions of features, the explanations of the 
TreeExplainer refer to the net effects of the features, given all correla
tions and interactions.

After visual inspection of the explanations, we assigned the carrier 
status of an AQP4 SNP as “negative” when the global feature effect 
consistently had a negative SHAP value, and as “positive” when the 
global feature effect consistently had a positive SHAP value.

Since the model uses the average amyloid burden of the whole cohort 
as a starting point, from which the prediction is shifted to higher or 
lower values according to the feature effects, a shift towards lower 
values is a shift to the normal, healthy case, and of interest for increased 
amyloid burden is only the shift towards higher values. Therefore we 
finally counted the number of positive SNPs for each individual to 
calculate a sex-specific SNP-based risk score both in ADNI and in A4/ 
LEARN as part of a feature engineering process where new features 
which are more relevant to the target can be created from existing fea
tures using domain knowledge and data analysis. This new feature 
represents the joint effect of the SNPs, given all correlations and statis
tical interactions.

2.5. Causal modelling and statistical analysis

Usually, machine learning modelling is performed as prediction 
modelling which seeks to accurately predict the outcome of interest 
from a set of given features, preferably with high predictive perfor
mance. However, good features for predictive modelling are often rather 
symptoms of the outcome than causes. For example, James et al. (James 
et al., 2021) have found that ML models outperform existing dementia 
risk prediction models with only six key features, namely level of in
dependence, clinical judgement of various aspects of decline, time to 
complete trail making test part B, clinical dementia rating (CDR) home 
and hobbies impairment, CDR memory and CDR orientation. These 
features have a strong predictive potential for dementia but cannot be 
considered as causal for the disease.

In contrast to predictive modelling, the goal of causal modelling is to 
estimate the true causal association between a particular variable and 
the outcome of interest. While randomized control trials are the gold 
standard to assess causal associations, they also can be studied to a 
certain extent in observational data by the formulation of a causal model 
of confounding and a careful consideration of the covariates based on 
this model (Arnold et al., 2020; Pearl and Mackenzie, 2018).

To represent our assumptions regarding the relationship between 
AQP4 status expressed as SNP-based risk score, brain amyloid burden 
measured as [18F]Florbetapir SUVR, and known demographic and ge
netic risk factors (age, sex, and APOE4 status), we developed a graphical 
causal model as a directed acyclic graph (DAG) (Pearl, 1995) using 
DAGitty (http://dagitty.net/) (Fig. 2). This causal model allowed us to 
assess which of the covariates have to be controlled for in a regression 
model. AQP4 status is the exposure of interest, brain amyloid burden the 
outcome. APOE4 status, age and sex affect brain amyloid burden 
directly, which includes all unknown or unobserved mediators. We also 
cannot exclude a possible effect of age and sex on both AQP4 and APOE4 
expression. In Chandra et al. (2021), no relationship between AQP4 

Fig. 1. Illustration of the SNP positions within the AQP4 gene. The 19 SNPs which were used for the analysis are represented in bold. The SNPs represented in regular 
type are in high correlation with one of the SNPs in bold (see Table 1).
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SNPs and APOE4 status could be established. Our own correlation 
analysis did also show no relationship, so that we did not include a 
relation between AQP4 and APOE ε4 in Fig. 2.

According to this causal model, the minimal sufficient adjustment set 
for estimating the total effect of AQP4 status, expressed as SNP-based 
risk score, on brain amyloid is age and sex. AQP4 status is then condi
tionally independent from APOE4 status, so that we don’t have to con
trol for it.

We stratified the sample on sex by analyzing the data separately 
within groups of males and females. Finally, we included age as a co
variate in a multiple linear regression model using ordinary least squares 
(OLS) regression within statsmodels (https://www.statsmodels.org) for 
both ADNI and A4/LEARN data.

To assess an association of the risk score with the prevalence of 
amyloid positivity, we grouped the study participants according to their 
risk score and compared the groups with respect to the percentage of 
amyloid-positive cases in the groups using the Cochran–Armitage trend 
test of statsmodels. To compare amyloid burden between groups of the 
same risk score, we performed an independent samples t-test using SciPy 
(https://scipy.org).

For all statistical tests we used p < 0.05 as the threshold for statistical 
significance.

3. Results

3.1. Study demographics

Table 2 shows demographic information and further characteristics 
for the two cohorts. The A4/LEARN cohort is significantly younger on 
average, and has no participants with MCI or AD. It has also significantly 
less APOE ε4 carriers and Aβ positives.

3.2. Feature engineering and estimation of risk score

For females, the average RMSE after performing 5-fold cross vali
dation is 0.32 without APOE4 and 0.25 with APOE4 as feature, as well as 
0.30 without APOE4 and 0.27 with APOE as feature for males. The 
average MAE is 0.26 (without APOE4) and 0.21 (with APOE4) for 

females as well as 0.24 (without APOE4) and 0.21 (with APOE4) for 
males. We therefore decided to include APOE4 into the feature set.

Fig. 3 shows the explanations for the global model structure as 
estimated by the TreeExplainer of SHAP for both females (left) and 
males (right) for ADNI data. When the model predicts the amyloid 
burden, it starts from the average amyloid burden of the cohort and uses 
the features to shift the value towards higher or lower values. The SHAP 
value on the x-axis represents this impact on the prediction of the model. 
The ordering of the features from top to bottom reflects the feature 
importance. As could be expected, APOE4 status is explained as the most 
important feature. Non-carrier status of the ε4 allele (blue dots) leads to 
a shift to lower predicted amyloid burden, and homozygous status of ε4 
(red dots) leads to a shift to higher predicted amyloid burden than 
heterozygous status of ε4 (purple dots).

The explainer also shows for several SNPs that the feature is used by 
the model consistently to shift the prediction to either lower or higher 
predicted values, espressed as negative or positive SHAP values. This is 
especially clear for 9 SNPs in females and 7 SNPs in males. A further 
criterion to consider SNPs was the importance of the feature to the 
model, expressed by the ordering of the SNPs in the explainer. Conse
quently, we assigned for the blue underlined SNPs in Fig. 3 (rs335930, 
rs151244, rs2075575, rs35248760 and rs3875089 for women, 
rs3763040, rs151244, rs16942851 and rs3875089 for men) the non- 
carrier status as positive, in the sense that amyloid burden is 
increased, for the red underlined SNPs (rs71353406, rs162009, 
rs72878787 and rs16942851 for women, rs2075575, rs335930 and 
rs162009 for men) the carrier status.

There were no cases in which the selection of SNPs in an individual 
were all either negative or positive, so that counting the number of SNPs 
with a positive effect on predicted amyloid burden for each individual 
resulted in risk scores between 2 and 7 for females in the ADNI cohort 
and between 1 and 7 in the A4/LEARN cohort, and between 2 and 6 for 
males in ADNI as well as A4/LEARN. Fig. 4 shows that the new feature 
“AQP4 SNP-based risk score” is relevant to the target for both the ADNI 
and the A4/LEARN cohort. For both cohorts and both males and females, 
the t-test shows that the differences in amyloid burden between the 
groups of lowest and highest risk score are significant (ADNI females: p 
= 0.0018, males: p = 0.035; A4/LEARN females: p = 0.043, males: p =
0.035).

3.3. Causal modelling and statistical analysis

3.3.1. Association between AQP4 SNP-based risk score and brain amyloid 
burden

For females, multiple linear regression with age as covariate showed 
a significant association of risk score with amyloid burden for the ADNI 
(p = 0.001, regression coefficient = 0.0473, 95 % confidence interval: 
0.02–0.074) as well as for the A4/LEARN (p = 0.014, regression coef
ficient = 0.011, 95 % confidence interval: 0.002–0.02) cohort. For 
males, a significant association could be shown in ADNI data (p = 0.005, 
regression coefficient = 0.0552, 95 % confidence interval: 0.017–0.094) 
but not in A4/LEARN data (p = 0.102, regression coefficient = 0.0106, 
95 % confidence interval: − 0.002–0.023). However, for both females 
and males in ADNI as well as in A4/LEARN, the mean amyloid burden 
differs significantly between the groups with the lowest and highest risk 
factors (ADNI: females p=0.002, males p=0.035; A4/LEARN: females 
p=0.043, males p=0.035).

3.3.2. Association between AQP4 SNP-based risk score and amyloid 
positivity

The distribution of PET SUVRs for the different risk scores in Fig. 4
suggests that the increase in average amyloid burden is not driven by a 
general, small increase for all participants with this risk score, but rather 
by a higher number of participants with considerably elevated amyloid 
burden, compared to the groups with lower risk score. This should 
reflect in an increase in the share of amyloid positives with increasing 

Fig. 2. Causal model as directed acyclic graph (DAG), to assess exposure- 
outcome adjustment set.

Table 2 
Demographic information and clinical characteristics of study participants.

ADNI A4/LEARN p value

Number of participants 324 2987
Age, Mean (SD) [y] 76.06 

(6.98)
71.36 
(4.75)

7E¡56

Males / Females 183 / 141 1206 / 
1781

Diagnosis: Cognitively 
unimpaired

125 2987

Diagnosis: Mild cognitive 
impairment

132 -

Diagnosis: Dementia 64 -
Diagnosis: non specified 3 -
% APOE ε4 carriers 39.5 35.8 0.0008
% Aβ positive 50.6 32.6 1E¡10
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risk score.
Fig. 5 shows that the risk score is indeed predictive for the prevalence 

of amyloid positivity, with a trend towards higher prevalence with 
increasing risk score. The Cochran-Armitage trend tests show that the 
trends are significant for both cohorts in females (ADNI: p = 0.002, A4/ 
LEARN: p = 0.04) as well as in males (ADNI: 0.0007, A4/LEARN: 0.03).

4. Discussion

In this work, we have used decision tree ensembles and explainable 
AI to assess the impact of interacting AQP4 polymorphisms on brain 
amyloid burden. This allowed us to define a sex-specific group of SNPs 
with increasing effects with respect to brain amyloid burden, which 
together showed a highly significant association with brain amyloid 
burden. In particular, the increase in mean amyloid burden with higher 
risk scores is driven by a higher number of individuals with increased 
amyloid burden, which reflects in an association with amyloid positiv
ity. Of note, the risk score which was estimated based on ADNI data was 
also significant in the completely independent A4/LEARN cohort of 
cognitively unimpaired participants with respect to both amyloid 
burden and share of amyloid positivity for females, and with respect to 
the share of amyloid positivity also for males.

For some of the individual SNPs which make up the risk score, effects 
on brain amyloid burden, cognition and functional decline in AD have 
already been described in previous work. Chandra et al. (2021) found 
that the carrier status of rs151244 was associated with increased Aβ 
uptake, but only for Aβ positive patients with late MCI or AD. Burfeind 
et al. (2017) found that the carrier status of rs3875089 was associated 
with slower cognitive decline or dementia progression. They also found 
that rs3763040 and rs3763043, which is in strong linkage disequilib
rium (LD) with rs71353406, were associated with faster cognitive 
decline or dementia progression.

However, they found also an inconsistent association of rs335929, 
which is in strong LD with rs16942851, with slower cognitive but faster 
functional decline. Similarly, Fang et al. (2022) found further 

inconsistent associations of rs3763040 and rs3763043 with worse ex
ecutive but better visuospatial function in a cohort of PD patients. The 
reason for these discrepant findings might be the occurance of a statis
tical peculiarity named Simpson’s paradox, which describes the phe
nomenon that a trend observed in the overall data can disappear or even 
reverse when the data are stratified or analyzed with respect to sub
groups. This effect is the consequence of an extremely unequal distri
bution of the combination of the carrier or non-carrier states for two 
SNPs (Fig. 6). Burfeind et al. (2017) describe such a situation for 
rs3763040 and rs3763043. They observed that minor allele carriers of 
rs3763040 were most often also minor allele carriers of rs3763043, 
without the two SNPs being in linkage disequilibrium. A trend for one 
SNP might therefore be driven by the trend of the second SNP and the 
distribution of the carrier/non-carrier combinations of both. The 
discrepant findings for the effect direction (protective and deleterious) 
might therefore be a consequence of the presence of a second SNP with a 
rare carrier/non-carrier combination which is not adequately covered 
by the available data. Consequently, considering the joint effects of the 
AQP4 SNPs has the potential to yield more reliable associations.

Besides effects for amyloid burden and disease progression in AD, 
SNPs of the risk score have also been found to be associated with sleep 
measures. rs335930 and rs16942851 are part of a haplotype which is 
associated with slow wave energy regulation in human NREM sleep (Ulv 
Larsen et al., 2020). The SNP rs35248760 is in high LD with 
rs72878776, which has been found to be associated with poorer overall 
sleep quality, as well as to moderate the effect of sleep duration on brain 
amyloid burden (Rainey-Smith et al., 2018). This provides a direct link 
between brain amyloid aggregation, sleep and AQP4. However, further 
studies are needed to understand the underlying molecular mechanisms.

While the studies of Burfeind et al. (2017) and Chandra et al. (2021)
have found associations of genetic variations of AQP4 with measures of 
dementia using classical linear models, these associations were mainly 
noted in cohorts of patients with significant clinical symptoms. With our 
method, which uses the joint effect of SNPs together with a stratification 
for sex, we were able to find associations which were consistent and 

Fig. 3. The SHAP summary plot explains the global structure of the decision tree ensemble model for females (left) and males (right). SHAP values on the x-axis 
represent the impact of a feature on the model’s prediction. Each dot of the beeswarm plot corresponds to an individual in the ADNI dataset. For AQP4 SNPs, red dots 
represent carriers (carrier status “high”) and blue dots represent non-carriers (carrier status “low”) of the SNPs. For the APOE4 feature, the colour of the dots 
represent the number of the ε4 alleles (0/1/2). The SNP-based risk score is calculated from the SNPs which are underlined in blue and red, so that for the blue 
underlined SNPs the non-carrier is the risk variant and for the red underlined SNPs the carrier is considered as the risk variant.
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reproducible in a cognitively unimpaired cohort. This may provide 
valuable insights into the disease’s underlying mechanisms at a very 
early stage in disease development, which opens up possibilities for 
early intervention or, potentially, prevention.

The joint effect of SNPs may be elucidated by considering their 
possible role as splicing enhancers or silencers in the transcription of 
AQP4 isoforms, providing a biological rationale for our method. Iso
forms are protein variants that differ in the number of exons included 
during the transcription of genetic information. AQP4 can be translated 
by alternative splicing into the isoform AQP4-M1, consisting of exons 
0–4 (see Fig. 1), which is freely mobile in the plasma membrane, or into 
the smaller isoform AQP4-M23, consisting of exons 1-4, which forms 
arrays in the astrocytic endfeet (Fang et al., 2022; Smith et al., 2014). 
Recently a further isoform was described, an elongated variant named 
AQP4X, which is generated by a stop codon readthrough event and 
which is exclusively perivascular (Sapkota et al., 2022).

A limitation of our study is the small size of the dataset which was 
used for modelling and explanations, since rare combinations of SNP 
states could be missed. We used the smaller ADNI cohort instead of the 
much larger A4/LEARN cohort for modelling and explanations because, 
especially for the later visits, all diagnoses were present, from cogni
tively normal to AD, while in A4/LEARN only cognitively normal par
ticipants were included. The small size of the dataset could also be a 
reason that we see for three of the SNPs (rs2075575, rs16942851 and 
rs335930) opposed effects between the sexes. From Fig. 3, it can be 
noted that in females the number of carriers and non-carriers of these 
SNPs are more balanced than in males, which could lead to the opposed 

effects. A replication of our method with a larger dataset, also containing 
the whole bandwidth of disease, would therefore be of high interest.

A further limitation is that the results of our study might not be 
translated to the general population since we restricted the ethnicity to 
“Not Hispanic or Latino” to ensure an ethnically homogeneous group. 
Genetic variants might occur at different frequencies in different pop
ulations, so that rare combinations of variants in one population might 
be more frequent in another population. A replication of our study using 
datasets that contain adequate numbers of participants with other eth
nicities would be of high interest.

Our method also does not differentiate between epistatic and sta
tistical interactions. Epistatic interactions describe a masking effect, 
whereby a status of a variant can be dominant over another variant in 
the sense that it prevents the other variant from manifesting its effect 
(Cordell, 2002). Statistical interactions originate from the unequal dis
tribution of the combinations of the carrier or non-carrier states of 
variants. The incorporation of a SNP-SNP-interaction specific model 
with consideration of epistatic interactions into the formulation of the 
risk score could have a potential to improve the performance of the risk 
score, and should be a topic of future investigations.

In summary, our results support the hypothesis of an involvement of 
the glymphatic system, and particularly AQP4, in the pathologic accu
mulation of ß-amyloid in the brain. Our findings suggest also that several 
AQP4 SNPs show a synergistic and sex-dependent effect on early brain 
amyloid aggregation pathology, which can be expressed by an AQP4 
polymorphism-based risk score. The risk score has the potential for 
practical application in stratification, such as in intervention studies or 

Fig. 4. (a) In the ADNI cohort the new feature “AQP4 SNP-based risk score”, calculated as the sum of deleterious variants, is clearly relevant to the target, amyloid 
burden measured as [18 F] Florbetapir PET SUVR, for both females and males. (b) In the A4/LEARN cohort, an increase in amyloid burden can also be observed with 
increasing risk score. The increase is especially driven by the extreme low and high risk scores, and is more pronounced for females.
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clinical trial recruitment. Additionally, it will be valuable for further 
investigations into associations with neuroinflammation and sleep, as 
well as into the role of AQP4 in amyloid aggregation.
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