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ABSTRACT

Recent advances in imaging and high-performance comput-
ing have made it possible to image the entire human brain at
the cellular level. This is the basis to study the multi-scale
architecture of the brain regarding its subdivision into brain
areas and nuclei, cortical layers, columns, and cell clusters
down to single cell morphology Methods for brain mapping
and cell segmentation exploit such images to enable rapid
and automated analysis of cytoarchitecture and cell distribu-
tion in complete series of histological sections. However,
the presence of inevitable processing artifacts in the image
data caused by missing sections, tears in the tissue, or stain-
ing variations remains the primary reason for gaps in the re-
sulting image data. To this end we aim to provide a model
that can fill in missing information in a reliable way, follow-
ing the true cell distribution at different scales. Inspired by
the recent success in image generation, we propose a denois-
ing diffusion probabilistic model (DDPM), trained on light-
microscopic scans of cell-body stained sections. We extend
this model with the RePaint method to impute missing or re-
place corrupted image data. We show that our trained DDPM
is able to generate highly realistic image information for this
purpose, generating plausible cell statistics and cytoarchitec-
tonic patterns. We validate its outputs using two established
downstream task models trained on the same data.

Index Terms— Human Brain, Cytoarchitecture, Deep
Learning, Convolutional Networks, Denoising Diffusion
Probabilistic Models

1. INTRODUCTION

Advancements in imaging and high-performance computing
have enabled whole section imaging of full tissue stacks of
the entire human brain [[1]], and allow for increasingly higher
resolutions down to micrometer resolution. This has stimu-
lated the development of Al-driven methods for brain region
segmentation [2]] and automated detection of cell bodies [3]],
which are key for linking such high-throughput imaging data
to anatomical reference atlases [4]]. Nevertheless, the image

data may contain artifacts caused by missing sections, tissue
tears, or staining errors, resulting in gaps within the cell dis-
tributions.

Despite careful laboratory processes and quality control
measures, such artifacts cannot be avoided in histological pro-
cessing of large specimen. Based on the datasets considered
in this work [[1]], we estimate the percentage of damaged or
missing tissue between 5 and 7% of the total tissue. In order
to provide complete cell distributions for analysis, imputa-
tion techniques are required to fill in the missing or corrupted
data. This imputation has, until now, been predominantly car-
ried out manually or in a semiautomated way at a resolution
of 20um [[1]. It has not been performed at a spatial resolution
of 1um, which is, however, prerequisite to 3D reconstruct
histological data sets at cellular level. Our objective is to sub-
stitute manual labour with an automated method, utilising a
deep learning model.

This model should optimally support downstream anal-
yses such as cell detection [3]] and cytoarchitecture classifi-
cation [2], by generating highly realistic image data which
closely models the original cell distributions in terms of cell
body sizes, densities, and higher-level cytoarchitectonic fea-
tures such as the laminar and columnar cortical organization.
Furthermore, it should be capable for provenance tracking, to
be reproducible.

To this end we propose an unconditional denoising dif-
fusion probabilistic model [5]] to replace previously labelled
artifacts in image patches with realistic intact textures (Fig-
ure [I). We train the model on light-microscopic scans of
cell-body stained histological human brain sections. The un-
conditional model is extended with the RePaint algorithm [6]
to enable correction of artifacts without requiring re-training.
We evaluate the model’s ability to mimic real data by ana-
lyzing the generated image data with two downstream neural
networks trained for cell segmentation and cytoarchitectonic
mapping, respectively.
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Fig. 1. Example patches from the evaluation dataset with
present artifacts. Left: Image patches with crystal artefact
(top) and missing tissue (bottom). Right: Corresponding
patches with artifacts removed by our DDPM and the RePaint
method. Red annotations show manually provided annota-
tions of the respective artefact. The repainted images show
no signs of the artifacts and closely follow the true cytoarchi-
tecture (e.g., the columnar organization).

2. METHODS
2.1. Denoising Diffusion Probabilistic Models

Denoising diffusion probabilistic models [5] establish a re-
lationship between noise and data distributions through an
iterative denoising process, generating data samples from a
noise source. These models offer a probabilistic scheme for
producing high quality data and have shown remarkable suc-
cess in domains such as image synthesis and data imputation.
The implicit ability for self-correction in predictions during
the stepwise diffusion process allows these models to learn
intricate dependencies essential for modeling cell distribu-
tions, complexities challenging to capture with conventional
approaches. The model defines a forward and backward diffu-
sion process. During the forward process q(zt|z:_1), Gaus-
sian noise is gradually added to the input image zy, which
here refers to a real image patch. It uses a predefined sched-
ule which defines number of iterations and noise level per it-
eration. In the resulting output image x,,, content is typically
fully replaced by random noise. The output distribution then
follows a normal distribution in image space. The backward
process pg(x¢—1|x:) then reverts the stepwise distortions of
the forward process. Other than the conceptually simple for-
ward process, this is a complex inverse problem, which the

DDPM approximates with a deep neural network. Follow-
ing [[7]], we utilize a U-Net architecture for the backward pro-
cess. DDPMs are unconditional models, which means that
they are designed to generate random samples of the image
distribution. For our application however, we need to inform
the model by the surrounding intact tissue so that it can pro-
duce textures capturing the specific properties of the local cell
distributions. In this study, we condition the model using sur-
rounding tissue information using the RePaint [[6] approach.

2.2. RePaint

The RePaint algorithm expands on unconditional DDPMs to
support inpainting of images, by altering the reverse diffusion
process. RePaint does not require any retraining or fine tuning
and can readily be applied to the trained model. In each step,
the input to the DDPM is composed of the current unknown
part of the image and the known part of the image with added
noise of the current step

Ty =po(M -2 +(1—-M)- z) ,

where pg is the aforementioned U-Net model and M is the
mask for the artefact or missing part. z; is the known im-
age passed through the forward diffusion process at time
step ¢ and x; is the currently generated image. Through this
approach, the newly generated part gets conditioned on the
known part of the image. Experiments in [6] showed the
consistency of the generated part to the known part can be
increased, by repeating each step j times. j is also referred to
as the jump length. To repeat the step we again add noise to
41 to create a new x; and use it in Equation@ Due to the
jumps, the model repeatedly combines known and unknown
parts of the image for every diffusion step, increasing the
dependency between the parts and generally improving the
results. We used a jump length of j = 5 in the experiments.

2.3. Model architecture

As proposed by we model py as a deep residual U-Net
with 14 residual blocks of layers, 7 for the encoding and 7
for the decoding part. We added self-attention at resolutions
8, 16 and 32. ¢ is modelled as a Gaussian forward diffusion
process with cosine noise schedule for 256 diffusion steps.
The model was tasked to predict the mean and variance of the
noise in each step.

3. RESULTS

3.1. Dataset & Training

Image patches for training and evaluation were sampled from
1 micron scans of the original tissue sections of the BigBrain
model ([[I]]). 74 random brain sections were selected (simi-
lar to [8]l, with 64 allocated for the training and 10 held back
for evaluation. Positions of training and evaluation sections
are indicated in Figure 2] For training, we sampled 20,000
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Fig. 2. Approximate location of sections constituting to the
training and evaluation datasets. Blue: Approximate loca-
tions of the training sections. Red: approximate locations of
evaluation sections.

patches randomly from gray matter regions in each of the 64
sections, resulting in 1.28 million samples. The evaluation
dataset was derived from the remaining sections and consisted
of 10,000 patches with 1000 samples per section. The patch
dimensions for all training and evaluation data were set to
1024x1024 pixels or 1mm? at a resolution of 1 micron, to
facilitate the model’s ability to learn larger cytoarchitectonic
structures and patterns. To exclude artifacts from all training
and evaluation patches, we created an artifact mask for ev-
ery section, masking all image parts which are depicting cor-
rupted or missing tissue. Training was conducted on 64 A100
GPUs on the supercomputer JURECA-DC [9] for 12 hours
and 100,000 steps. The learning rate was set to le — 5. All
training and evaluation was performed using 16 bit floating
precision.

3.2. Unconditional Generation

Before addressing the repainting task, we analyzed the uncon-
ditional generative quality of the DDPM using the commonly
used Frechét Inception Distance (FID) [10]. However, the
FID is not well applicable to histology data, since we expect
the cytoarchitectonic image data clearly outside the training
data distribution of the Inception model. Instead, we utilize
the latent space of a recently proposed cytoarchitecture clas-
sification model [2]. The classification model is pretrained
using a contrastive learning approach and then finetuned to
classify brain areas based on their cytoarchitecture. Just like
the Inception model, it uses a latent space of size 2048. To
distinguish the newly proposed metric, we will refer to it as
FCD (Frechét Cytoarchitecture Distance). To demonstrate its
efficacy in evaluating newly generated samples, we followed
the procedure outlined in and assessed it against a range
of perturbations. The test results are presented in Figure [3]
To derive the FCD value, we utilized 10,000 images from the
evaluation set and 10,000 images generated by the DDPM.
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Fig. 3. The FCD is evaluated for different disturbance levels
of A: Gaussian Noise, B: Gaussian Blur, C: Salt & Pepper
Noise and Dv: Mixing the dataset with MNIST samples.

The resulting FCD score for the model was 0.09. In contrast
the FCD for an additional 10,000 images from the evaluation
set generated a score of 0.006.

3.3. Artefact Repair

After evaluating the model in the unconditional setting, we
investigated its practical performance in repairing tissue arti-
facts. Artefact repair was run on a dataset of 10,000 image
patches of size 1024 x 1024, sampled from the evaluation
sections, which were not seen during training. These patches
were filtered for artifacts and can thus be used as intact ref-
erence data. We obstructed random parts of the images us-
ing artefact masks from [[11]]. The area covered by the masks
ranged from ~ 5% to 50%. The obstructed images were then
repainted using the DDPM with the RePaint method. Process-
ing a patch of size 1mm? took 35 seconds on one A100 GPU.
We compared the image before and after repainting, measur-
ing cell statistics in the obstructed area and cytoarchitectonic
classification of the complete patch. To compare the distor-
tion introduced by the DDPM, we calculated the FCD of the
repaired patches and the original intact patches, achieving a
score of 0.0044.

3.3.1. Cell Statistics

Brain sections stained for cell bodies can be used to evaluate
cytoarchitectonic properties like densities, counts, sizes and
shapes of cells. We want to test whether the model preserves
such fundamental attributes in an adequate fashion. To this
end we used the recently proposed Contour Proposal Network
(CPN) [3] for extracting the cell statistics in the masked re-
gion before and after the repainting. As the CPN was trained
on highly similar datasets, we assume it to detect the the cell
bodies sufficiently well, thus providing a suitable independent
reference. The cell statistics arising from the images repaired
by the DDPM were compared to the statistics extracted from
the intact reference images. The median relative error was
calculated for cell density (number of cells per area) and cell
size (average size of the cells in a given area). The statistics
were only compared in the masked regions. The error was
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Fig. 4. The median relative error in cell statistics after repaint-
ing with the proposed DDPM plotted against the masking per-
centage. Blue line: Median relative error in cell density. Red
line: Median relative error in cell size. The median relative er-
ror for the cell size is below 7.5% for all masking percentages,
while the median relative error for density is below 5.5%.

binned by percentage of tissue masked and the average and
variance of these bins were matched against the percentage of
masked tissue in figure[d The average relative error is below
10% even for large obstructed regions.

3.3.2. Cytoarchitectonic classification

Cortical brain regions are characterized by their highly spe-
cific cytoarchitecture, for example relative thicknesses of the
cortical layers. These properties are essential for classify-
ing brain regions, and should be preserved when inpainting
missing information. To evaluate this effect, we use the cy-
toarchitectonic classification model proposed by [2] to pre-
dict the brain region of intact and repaired image patches.
If the model preserves essential cytoarchitectonic properties
sufficiently well, the classification for a repaired patch should
match the one for the original intact patch. We tested classi-
fications for 10,000 evaluation patches. Figure [5] shows the
percentage of patches where classification predicted the same
brain region after repairing, averaged for different repainting
area sizes. To better capture possible inaccuracies in the clas-
sification model, we also compared the two most likely classi-
fications after the artefact was repaired with the previous clas-
sification (k = 2 accuracy”). The graph shows a clear trend,
where larger artefact constitute a higher percentage of wrong
classifications after repainting. The overall average classifi-
cation accuracy is above 85%. When we account for possible
inaccuracies in the model classification, the £ = 2 accuracy
is above 98%.
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Fig. 5. Relative number of patches where predictions of an
independent cytoarchitecture classification model [2] are con-
sistent between intact and inpainted image patches according
to kK = 1 and k = 2 classification accuracy. Values are plotted
over increasing size of the inpainted area. Lines represent the
mean, underlying area represents the standard deviation.

4. DISCUSSION & CONCLUSION

Visual inspection by experts and evaluation with the proposed
FCD shows that the presented model is able to generate plau-
sible high quality images for repainting artifacts, as well as
for unconditional image generation. Images generated by the
inpainting model show consistent cell statistics, with devia-
tions below 7.5% regarding essential properties like cell den-
sity and size. The model successfully repairs image artifacts
by generating plausible structures, which are suitable for sub-
sequent analysis algorithms, including cell detection and cy-
toarchitecture classification. This way the model provides an
important basis for enabling microstructural analysis of large
tissue stacks with missing or corrupted parts.

To improve positioning and appearance of structures such
as blood vessels, cortical columns or the pial surface, across
brain sections, future work will consider how information
from neighboring sections can be incorporated into the pro-
cess, for example using Siamese neural networks [12], and
how to reduce the computational time required to repair ar-
tifacts. For example, repairing artifacts in all sections of the
BigBrain [1]] dataset would require approximately 645 days
on a single A100 GPU, if the proportion of corrupt tissue
is assumed to be &~ 5%. Stable diffusion [13], which ap-
plies diffusion in a smaller latent space, could help to reduce
the computational costs significantly. In addition, runtime
could be further reduced by distilling the number of diffusion
steps [14]. Finally, employing methods for automatic artifact
detection to replace manual annotation of artifacts (Figure [1)
will facilitate application of the proposed method at higher
throughputs.
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