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ABSTRACT

Understanding the cortical organization of the human brain
requires interpretable descriptors for distinct structural and
functional imaging data. 3D polarized light imaging (3D-PLI)
is an imaging modality for visualizing fiber architecture in
postmortem brains with high resolution that also captures the
presence of cell bodies, for example, to identify hippocam-
pal subfields. The rich texture in 3D-PLI images, however,
makes this modality particularly difficult to analyze and best
practices for characterizing architectonic patterns still need
to be established. In this work, we demonstrate a novel
method to analyze the regional organization of the human
hippocampus in 3D-PLI by combining recent advances in
unfolding methods with deep texture features obtained using
a self-supervised contrastive learning approach. We identify
clusters in the representations that correspond well with clas-
sical descriptions of hippocampal subfields, lending validity
to the developed methodology.

1. INTRODUCTION

A comprehensive understanding of human brain organization
requires measuring its distinct structural and functional prop-
erties and making them accessible in the form of spatial maps
and multimodal brain atlases [1]. Previous work on mapping
the hippocampus, an archicortical structure crucial for learn-
ing and memory, emphasizes the importance of integrating
multimodal data to confirm known brain regions identified by
cytoarchitectonic criteria and reveal new subdivisions [2].

To contribute to the joint effort in multimodal mapping,
we aim to characterize the hippocampal architecture based
on three-dimensional polarized light imaging (3D-PLI) [3].
3D-PLI offers a staining-free microscopic imaging technique
for whole postmortem brain sections that exclusively utilizes
optical properties of the tissue. It enables both the measure-
ment of nerve fiber orientations with microscopic resolution,

revealing fine-grained structures such as small fiber tracts,
as well as the presence of cell bodies through lower light
transmittance [4]. The rich texture information provided by
3D-PLI enables visual identification of hippocampal sub-
fields [4]. This process, however, requires anatomical expe-
rience and is enormously time-consuming. Since variations
in 3D-PLI texture are complex and challenging to quantify,
observer-independent mapping, as performed for cell-body
stained sections [5], has not yet been achieved and best prac-
tices for representing 3D-PLI still need to be established.

In this work, we aim to broaden the interpretation of
3D-PLI by automatically characterizing the regional organi-
zation of the pyramidal layer in the human hippocampus. We
build on deep texture features generated by a recently intro-
duced self-supervised contrastive learning approach [6]. To
account for the highly folded morphology of the hippocam-
pus, we build on unfolding methods [7-9] to sample features
at different depths within the pyramidal layer and project
them into a flat reference space. To evaluate the distinctive-
ness of this approach, we compare identified clusters in the
texture features with known subfields. Our contributions are
the following:

* We demonstrate a novel method to analyze the regional or-
ganization of the human hippocampus in 3D-PLI by com-
bining unfolding methods [7] with deep texture features
by a self-supervised contrastive learning objective [6].

* We demonstrate that texture features learned by a cross-
section sampling strategy [0] to generate positive pairs in
contrastive learning enable more stable clustering by hip-
pocampal subfields compared to in-plane sampling and
classical features derived from 3D-PLI parameters.

* We perform an ablation study of individual input modali-
ties and show that adding fiber orientations to the input for
feature extraction improves correspondence of clusters to
subfields over features from transmittance maps alone.
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Fig. 1: 3D-PLI measurement process and example parameter
maps for a brain section through a human hippocampus. (A)
Setup of the polarizing microscope (PM). For rotations p of
a linear polarizer (i), an intensity profile is recorded for each
pixel (ii), from which transmittance I, fiber direction ¢ and
inclination « (from retardation r) can be derived. ¢ and « de-
termine the 3D orientation of nerve fibers (iii). (B) Example
transmittance map I with hippocampal subfield labels CA1,
CA2, CA3, CA4 and the Subicular complex. (C) Fiber orien-
tation map (FOM) of the same section as in (B).

2. METHODS

3D-PLI hippocampus. In this work, we utilize a 3D recon-
structed human hippocampus of an 87-year-old male [10]
measured with a polarizing microscope (PM) [3]. The 3D
volume is composed of 545 individual brain sections, each
26757 x 22734 pixels in size. Damaged or missing sections
are replaced by their nearest neighbor. Truncated absolute
anterior and posterior parts are omitted for analysis.

The measurement (Fig. 1A) was carried out at 1.3 um
in-plane resolution on individual 60 um thick brain sections.
From the measured light intensity values, 3D-PLI parameter
maps transmittance I7 (Fig. 1B), retardation r, and direc-
tion ¢ (in-plane orientation) were derived. A transmittance-
weighted model [ |] was applied to derive fiber inclination «
(out-of-plane orientation) from retardation values r. The re-
sulting three-dimensional orientation of nerve fibers was vi-
sualized in fiber orientation maps (FOM; Fig. 1C). FOMs en-
code direction ¢ as hue and inclination « as saturation and

value in HSV color space (darker areas mark higher inclina-
tion).

Learning 3D-PLI texture features. To learn texture
features from 3D-PLI parameter maps, we build on previous
work demonstrated for the occipital pole of a vervet monkey
brain [6]. Their approach builds on the observation that brain
architecture organizes around spatially consistent groups,
which is incorporated in a sampling of spatially close positive
pairs in the SimCLR contrastive learning framework [12]
(Fig. 2A). Here we summarize the approach proposed in [6].

To obtain positive pairs, consisting of anchor sample x,
and positive sample z, locations for z are drawn from
a circle (CL-2D) or sphere (CL-3D) with a fixed radius of
r = 118 um around a random sampling location for x,. The
locations are rounded to the next available section, excluding
sampling from the same section in CL-3D. At each sampling
location, square image patches of 128 pixels (166 um) size
are extracted from transmittance I, direction ¢ and retarda-
tion » maps. On each patch, 3D-PLI specific data transforma-
tions ¢t ~ T are applied to become robust to rotation, blur,
and color contrast. The patches are fed to a feature-reduced
ResNet-50 [13] encoder f to extract 256-dimensional feature
vectors hg, h*, which are then projected to 32-dimensional
projections z,, z by a 2-layer MLP projection head g.

For joint training of f and g, we create batches of 512
positive pairs. Per positive pair, samples in all other pairs are
used as negative examples for computation of an InfoNCE
loss [14]. Model training involves all sections of the hip-
pocampus volume except for the 10 most anterior sections,
which are kept for validation. We use Adam optimizer with
a learning rate of 103, a weight decay of 10°°, 51 =0.9,
B2 =0.999 and € = 108, We set 7 = 0.5 in the InfoNCE loss
and train the model to convergence of the validation loss.

After training, projection head g is discarded and deep
texture features h = f(z) are extracted for each section in the
volume using a sliding window approach with an overlap of
50% between patches to generate feature maps (Fig. 2B). By
stacking the feature maps, we obtain a new feature activation
volume of shape 419 x 545 x 356 with 256 channels.

3D-PLI baseline features. To show the effectiveness of
deep texture features for representing regional differences in
hippocampal architecture, we compare them with baseline
features. First, we adapt fractional anisotropy (FA) [15] to
represent fiber orientations. To represent the distribution of
orientations for patches, we project joint values of ¢ and «
onto points on the unit sphere. The FA values are then cal-
culated from the eigenvalues of their scatter matrix. As a
second feature, we compute mean transmittance values I:T
for patches of Ir. As transmittance maps I show a global
similarity with myelin stains [3] and are affected by the low
light transmittance of cell bodies [4] they include informa-
tion about myelin- and cell body densities. We compute these
baseline features for patches of 64 pixels (83 um) to achieve
a comparable resolution to the deep texture feature maps.
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Fig. 2: Overview of the deep texture feature extraction and unfolding. (A) Encoder models f are trained by (i) sampling positive
pairs at a fixed distance r either in-plane (CL-2D) or across brain sections (CL-3D) in (ii) a contrastive learning framework.
(B) Selected feature maps generated by CL-3D. A sliding window approach is used to generate feature maps for whole brain
sections. Feature maps are overlaid with transmittance maps for reference. (C) Coronal view of surfaces extracted using
HippUnfold, overlaid on feature #143 and transmittance (i). Deep texture features by CL-3D are sampled along interpolated
vertices between geometrical inner and outer surfaces (green arrows; ii) and concatenated into single vectors. (D) Scree plot
showing highest eigenvalues for the first 6 PCA components calculated for the concatenated texture features. (E) Unfolded
projections of the concatenated features by CL-3D onto the PCA components with largest explained variance. Components 1-6
are shown on the smoothed mid-surface (left) and in unfolded space (right). Gray marks missing data.

Surface projection and unfolding. To analyze the folded
architecture of the hippocampus, we apply HippUnfold [7].
HippUnfold provides an unfolded visualization of variations
along both the long-axis and proximal-distal axis of the hip-
pocampus [8] as well as a common coordinate system for
cross-subject comparison [9]. Specifically, it generates geo-
metrical inner and outer surfaces of the pyramidal layer of the
hippocampal cornu Ammonis (CA) region and the subicular
complex (Fig. 2C). The surfaces correspond to the geometric
inner and outer curvature of the hippocampus and represent
the interface between the pyramidal and radiatum layers and
between the pyramidal and oriens layers, respectively.

Using surfaces by HippUnfold, we sample features from
the feature activation volume at several depths, which are
generated by interpolating between corresponding vertices of
geometrical inner and outer surfaces, including the surfaces
themselves. This enables aggregation of 3D-PLI texture fea-
tures for the full depth of the pyramidal layer, as demon-
strated for cytoarchitectonic features [8]. For each vertex of
a mid-surface, we concatenate features at 17 depths into sin-
gle vectors of size 4352. To reduce dimensionality for vi-

sualization and improve computational efficiency in further
analysis, we resolve covariance in the features using PCA.
In addition to PCA, we reduce the effect of the cutting angle
of the sectioning plane using confound regression [16]. The
concatenated features are projected onto 52 principal compo-
nents with largest explained variance (80.1% total variance
explained). Selected projections are shown in Fig. 2E. Base-
line features are processed in the same way.

Evaluation using KMeans clustering. We evaluate the
distinctiveness of different feature encodings for the architec-
ture of the CA regions by comparing them with subfield la-
bels [9] (Fig. 3A). The labels differentiate between CA1, CA2,
CA3 and CA4 regions and group areas of the subicular com-
plex in a single label. We introduce an additional label as the
vertical component of the uncus. All labels are extrapolated
to missing data resulting from above-mentioned truncation.

To determine how well features reflect the regional orga-
nization of the hippocampus, we perform k-means clustering
for 6 clusters. Three iterations of graph smoothing by com-
puting mean values over features of neighboring vertices are
performed before clustering to reduce noise. We subsequently



Table 1: Evaluation metrics for k-means clusterings for 6
clusters of features by different feature extraction methods.
Metrics are averaged over 100 independent runs on 50% ran-
dom subsets of vertices and evaluated on the full set.

Method ~ Input | Purity  ARIT MI?T
Ir,o.r | 0.67 033  0.72

CL-3D Ir 0.65 0.30  0.66
o, r 0.52 0.16  0.49

Ir,p,r | 0.63 026  0.61

CL-2D Ir 0.58 021  0.50
o, r 0.51 0.13  0.40

Ir+FA Ir,o,r| 053 0.15  0.40
Iy Iy 0.51 0.13  0.36
FA Ir, o, | 0.50 0.11 027

compare all clustering results with subfield labels by com-
puting purity, mutual information, and adjusted Rand Index
(ARI) [17], which measure the homogeneity of labels within
clusters, the shared information between clusters and labels,
and the similarity between clusters and labels, respectively.

3. EXPERIMENTS AND RESULTS

We show 6 k-means clusters for CL-3D in Fig. 3B and for
FA + I7 in Fig. 3C. The topographical location and extent of
clusters in CL-3D and FA + I features show a good agree-
ment with that of hippocampal CA1 - CA4 regions and the
subicular complex. Compared to FA + I, CL-3D features
show a clearer alignment and reduced noise in the clusters.
For a quantitative comparison of k-means clusters with
subfield labels, we average metrics across 100 independent
initializations of k-means, each fitted to random subsets of
50% of vertices and evaluated on the entire dataset (Tab. 1).
Given the same input modalities, deep texture features consis-
tently achieve higher scores than the baseline features, with
CL-3D outperforming CL-2D. While the highest scores for
each method are achieved when using all input modalities
(I, ¢, r), features derived from transmittance maps alone
perform almost as well. Features based only on fiber orien-
tation information encoded in ¢ and r achieve lower scores
compared to features based on transmittance values I.

4. DISCUSSION & CONCLUSION

In this study, we combined deep 3D-PLI texture features with
geometric unfolding to derive a novel approach for charac-
terizing the regional organization of human hippocampal CA
regions. The texture features were extracted using a recently
proposed, fully data-driven representation learning approach
for 3D-PLI [6], and evaluated in a canonical surface space
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Fig. 3: Comparison of k-means clustering for 6 clusters with
anatomically identified subfield labels (A). Clusters of CL-3D
texture features (B) more closely resemble the subfield la-
bels than clusters of mean transmittance I and fractional
anisotropy FA (C). Images show the midsurface in folded
(left) and unfolded space (right). Black contours and white
spots show positions of missing data.

obtained via topological unfolding [7, 8]. Although the fea-
tures do not cluster into a precise delineation of hippocampal
subfields as identified by classical cytoarchitectonic criteria,
they follow the general regional organization pattern and ad-
ditionally highlight an expected functional rostro-caudal het-
erogeneity without explicit prior information on anatomy.

Our experiments have shown that features extracted from
transmittance maps alone already form clusters that corre-
spond well to hippocampal subfields. This is expected, as
transmittance maps contain information about cyto- and fiber
architecture [4]. Including fiber orientation information as in-
put for feature extraction, however, further improves corre-
spondence with subfields. This is in line with neuroanatomi-
cal studies that consider myeloarchitecture for subfield delin-
eation [18]. We have further shown that cross-section sam-
pling of positive pairs in contrastive learning leads to bet-
ter clustering of 3D-PLI texture by subfields compared to in-
plane sampling, which are both considered in [6].

While this study focused on a single specimen, the ap-
proach is fully unsupervised and can thus be applied to other
brains, specimens, and microscopic modalities with available
3D reconstructions. This will be part of future investiga-
tions. Projecting deep texture features to unfolded space using
HippUnfold [7] enables subsequent correlation with diverse
modalities [9]. The presented work thus lays the foundation
for incorporating 3D-PLI texture information into a compre-
hensive multimodal mapping of the human hippocampus.
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