001030475 001__ 1030475
001030475 005__ 20251027132712.0
001030475 0247_ $$2doi$$a10.1002/elsa.202400013
001030475 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05321
001030475 0247_ $$2WOS$$aWOS:001299743900001
001030475 037__ $$aFZJ-2024-05321
001030475 041__ $$aEnglish
001030475 082__ $$a540
001030475 1001_ $$0P:(DE-Juel1)165579$$aMartens, Christina$$b0$$eCorresponding author
001030475 245__ $$aConnecting Cell Structure and Current‐Dependent Environment Changes in CO2 Electrolysis to GDE Operation Regimes and Multi‐Cell Interaction
001030475 260__ $$aWeinheim$$bWiley-VCH Verlag GmbH$$c2024
001030475 3367_ $$2DRIVER$$aarticle
001030475 3367_ $$2DataCite$$aOutput Types/Journal article
001030475 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1760353629_32396
001030475 3367_ $$2BibTeX$$aARTICLE
001030475 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001030475 3367_ $$00$$2EndNote$$aJournal Article
001030475 520__ $$aConsecutive development of materials, components, and ultimately, devices does not appear to be a promising strategy in CO2 electroreduction because maintaining comparability and transferring results between idealized and application-oriented systems proves challenging. A modular cell design and tracking cell conditions via sensors may be a solution. We displayed a strategy to characterize gas diffusion electrode operating regimes in a flow cell with regard to different current density ranges, as well as the impact of the flow gap design. We revealed strong interdependencies between cell components, their functions as well as individual cells when integrated into a stack. Expanding the scope and resolution of experimental data made new information on the change of system parameters in flow cells accessible.
001030475 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001030475 536__ $$0G:(DE-Juel1)BMBF-03SF0627A$$aiNEW2.0 - Verbundvorhaben iNEW2.0: Im Zentrum des Inkubators Nachhaltige Elektrochemische Wertschöpfungsketten (iNEW 2.0) steht die Erforschung und Entwicklung neuartiger und leistungsfähiger Elektrolyse-verfahren zur Anwendung in nachhaltigen Power-to-X (P2X) Wertschöpfungsketten. (BMBF-03SF0627A)$$cBMBF-03SF0627A$$x1
001030475 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
001030475 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001030475 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
001030475 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x0
001030475 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x1
001030475 7001_ $$0P:(DE-Juel1)185606$$aQuentmeier, Maximilian$$b1$$ufzj
001030475 7001_ $$0P:(DE-Juel1)179220$$aSchmid, Bernhard$$b2$$ufzj
001030475 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b3$$ufzj
001030475 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4$$ufzj
001030475 773__ $$0PERI:(DE-600)2984616-X$$a10.1002/elsa.202400013$$gp. e202400013$$pe202400013$$tElectrochemical science advances$$ve202400013$$x2698-5977$$y2024
001030475 8564_ $$uhttps://juser.fz-juelich.de/record/1030475/files/Electrochemical%20Science%20Adv%20-%202024%20-%20Martens%20-%20Connecting%20Cell%20Structure%20and%20Current%E2%80%90Dependent%20Environment%20Changes%20in%20CO2.pdf$$yOpenAccess
001030475 8767_ $$8W-2024-00987-b$$92024-12-03$$a1200209188$$d2024-12-18$$eAPC$$jZahlung erfolgt$$zOable Reporting 08 + Rechnung
001030475 909CO $$ooai:juser.fz-juelich.de:1030475$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001030475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165579$$aForschungszentrum Jülich$$b0$$kFZJ
001030475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185606$$aForschungszentrum Jülich$$b1$$kFZJ
001030475 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)185606$$aRWTH Aachen$$b1$$kRWTH
001030475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179220$$aForschungszentrum Jülich$$b2$$kFZJ
001030475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b3$$kFZJ
001030475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ
001030475 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b4$$kRWTH
001030475 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001030475 9141_ $$y2024
001030475 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001030475 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001030475 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001030475 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001030475 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001030475 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001030475 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-09-04
001030475 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-03-11T12:17:32Z
001030475 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-03-11T12:17:32Z
001030475 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001030475 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-09-04
001030475 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-09-04
001030475 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-09-04
001030475 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-09-04
001030475 920__ $$lyes
001030475 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001030475 980__ $$ajournal
001030475 980__ $$aVDB
001030475 980__ $$aUNRESTRICTED
001030475 980__ $$aI:(DE-Juel1)IET-1-20110218
001030475 980__ $$aAPC
001030475 9801_ $$aAPC
001030475 9801_ $$aFullTexts