Y)

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 71, NO. 9, SEPTEMBER 2024

5345

¥ S

Synaptogen: A Cross-Domain Generative
Device Model for Large-Scale
Neuromorphic Circuit Design

Tyler Hennen™, Leon Brackmann', Tobias Ziegler, Sebastian Siegel”,
Stephan Menzel™, Senior Member, IEEE, Rainer Waser ™,
Dirk J. Wouters™, Member, IEEE, and Daniel Bedau

Abstract—We present a fast generative modeling
approach for resistive memories that reproduces the
complex statistical properties of real-world devices.
By training on extensive measurement data of an integrated
1T1R array (6000 cycles of 512 devices), an autoregressive
stochastic process accurately accounts for the cross-
correlations between device switching parameters, while
nonlinear transformations ensure agreement with the
joint cycle-to-cycle (C2C) and device-to-device (D2D) write
distributions. In addition to a high-level programming
version, the model is also implemented in Verilog-A
to enable efficient simulation of analog circuits. This
statistically comprehensive model can be used to simulate
crossbar sizes with up to 1024 x 1024 devices, and
benchmarks show that it achieves read/write speeds
several orders of magnitude higher than a variability-aware
physics-based compact model and over 10x faster than
even a simplified and deterministic compact model.

Index Terms— Circuit modeling, neural network hard-
ware, resistive circuits, statistics, stochastic circuits.

. INTRODUCTION

PRESSING challenge for large-scale simulations of neu-
romorphic systems is the availability of suitable synaptic
device models for resistive memories such as ReRAM [1]. For
applications, it is important to accurately capture the complex

Manuscript received 10 April 2024; revised 17 June 2024; accepted
8 July 2024. Date of publication 19 July 2024; date of current version
23 August 2024. This work was supported in part by the German Federal
Ministry of Education and Research through the Projects NEUROTEC |l
under Grant 16ME0399 and Grant 16ME0398K and in part by NeuroSys
under Grant 03ZU1106AA and Grant 03ZU1106AB. The review of
this article was arranged by Editor S. Alam. (Corresponding author:
Tyler Hennen.)

Tyler Hennen, Leon Brackmann, Tobias Ziegler, and Dirk J. Wouters
are with the Institut fir Werkstoffe der Elektrotechnik 2 (IWE2),
RWTH Aachen University, 52074 Aachen, Germany (e-mail: t.hennen@
iwe.rwth-aachen.de).

Sebastian Siegel and Stephan Menzel are with the Peter Griinberg
Institute (PGI-7), Forschungszentrum Julich, 52428 Julich, Germany.

Rainer Waser is with IWE2, 52074 Aachen, Germany, and also with
PGI-7, 52428 Jilich, Germany.

Daniel Bedau is with Western Digital Corporation, San Jose,
CA 95119 USA (e-mail: daniel.bedau@wdc.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TED.2024.3427616.

Digital Object Identifier 10.1109/TED.2024.3427616

stochastic behavior of the devices, and to handle modern
neural network sizes, models should also be fast enough to
simulate millions of cells at once.

Many stochastic models, both empirical and physics-based,
have been used in different simulation domains; from compact
models compatible with circuit simulators [2], [3], [4], [5], [6]
to highly abstracted models for simulating analog machine
learning (ML) tasks in high-level programming languages
[71, [8]. To improve accuracy, there has been progress in using
measurement data to infer distributions of model parameters
[9], [10]. However, models often use simplistic variability
mechanisms such as sampling independent parameters from
normal distributions. While able to approximate device vari-
ance via ad hoc fitting procedures, models often have limited
ability to capture all the statistical details important for net-
work performance. Furthermore, even device models which
have freely available implementations are not applicable across
different simulation domains, and although they can easily
bottleneck many-device simulations, performance benchmarks
are rarely reported.

In a previous work, we showed that a computationally
lightweight generative model can be trained on electrical
characteristics of a fabricated device to provide high-speed
simulations of large numbers (>10°) of cells with unprece-
dented statistical accuracy [11]. While we earlier focused
solely on large-scale simulations using a high-level pro-
gramming language, here we present a circuit-level model
implemented in the hardware description language (HDL)
Verilog-A, necessary to bridge the divide between the ML and
analog circuit simulation domains. The model was expanded
to cover a device configuration with access transistors (1T1R),
to more accurately model gradual RESET transitions for
multilevel programming, and to incorporate many devices into
the measurement, training, and generation processes.

The stochastic modeling closely captures the distributions,
cross-correlations, and history dependence of ReRAM
switching parameters as the devices are cycled [cycle-
to-cycle (C2C)], as well as how those cycling statistics
vary between the different devices on the chip [device-to-
device (D2D)]. This open-source device model is far more

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5962-418X
https://orcid.org/0000-0002-4836-5020
https://orcid.org/0000-0002-1535-6515
https://orcid.org/0000-0001-9922-4861
https://orcid.org/0000-0002-4258-2673
https://orcid.org/0000-0002-9080-8980
https://orcid.org/0000-0002-6766-8553
https://orcid.org/0000-0002-2141-3512

5346

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 71, NO. 9, SEPTEMBER 2024

G000
%%ﬁﬁ%ii
00000
rl’l’n’u’n
000000
AR RS
?r‘ ’.‘ . §
Nllifirife

4444448

Fig. 1. ReRAM chip layout in the MAD200 process design kit (left) and
an optical image of the fabricated 1T1R ReRAM array (right).

LLLLLLLL
J
! 1\
I

Fig. 2. Simplified circuit diagram showing a connected vector of
512 1T1R ReRAM devices which were individually selected for mea-
surement of model training data. Transistor bodies were biased to
—1.8 V as bipolar voltage sweeps were applied to the WL and current
was measured at the respective BL (0 V).

statistically comprehensive than the existing compact models
and outperforms them by several orders of magnitude in
read/write benchmarks. In circuit simulations, we demonstrate
weight programming and readout of crossbar arrays with up
to 256 x 256 and 1024 x 1024 devices, respectively, the
feasibility of which has not been previously shown.

II. METHODS
A. Electrical Measurements

An integrated ReRAM chip was obtained through the man-
ufacturing broker Circuits Multi-Projects (CMP) and used for
electrical measurements. A 512 x 32 1TIR crossbar array was
part of a custom layout within the Memory Advanced Demon-
strator 200 mm (MAD200) design environment (Fig. 1).
Select logic and access transistors were implemented in
the HCMOS9A STMicroelectronics 130-nm CMOS process,
and ReRAM devices with material stack TiN/HfO,/Ti were
deposited in a postprocess by CEA-LETI [12]. Each ReRAM
device in the array was connected in series with an integrated
common-source N-channel field-effect transistor in a standard
ITIR configuration. The 512 bit lines (BLs) were multiplexed
to one output pin, the corresponding 512 select lines (SLs)
were multiplexed to another output pin, whereas each of the
32 word lines (WLs) was directly routed to individual output
pins. The packaged chip was mounted on a custom printed
circuit board (PCB) providing a PC interface via the digital
outputs of a data acquisition board whereby devices can be
individually addressed for measurement. In this work, a total of
512 devices sharing a single WL in the array were sequentially
selected to collect training data (Fig. 2).

High-speed measurements were performed using external
generating and sampling equipment connected to the PCB over
50-2 lines. To collect bipolar switching cycles continuously

p

X1 Xn-p-1 Xp-p Xp-p+1

x
3>
-

0000 6|06

A 4

v

OOOOP G+« |3

0000 6 @ 6 &
00006 @ @ @
0000 [6le @ @

& &n-p-1

™
3
X
™
&

&n-p En-p+1

Fig. 3. Graphical depiction of the VAR(p) base process used to
reproduce memory cycling statistics. Past features within cycle range
p have a linear deterministic impact on future values, and a 4-D white
noise process €, contributes stochasticity to each feature.

with a single driving signal, an unusual 1T1R biasing was
necessary. The chip substrate (and FET body) was biased to
—1.8 V relative to signal ground, and the gate was biased to
1.35 V while a bipolar driving signal was applied to the WL
and current was measured at the BL through a 50-Q shunt
to 0 V. Devices were first electroformed by a 3-V amplitude
triangle pulse with 1-ms duration before being cycled by a
continuous triangle waveform between —1.5 and 2 V with
I-ms period. Preconditioning cycles were initially applied
to each cell before collecting 6000 switching current versus
voltage (I, V) traces for each of the 512 devices.

B. Statistical Modeling

The core concept of the generative device model is to
first extract important features (i.e., resistance and voltage
threshold levels) from each cycle of the training data, and then
learn to efficiently generate new samples with very similar
statistical properties. Using the generated features as a guide,
we approximate the 7(V) dependence for simulated cells
according to the voltage sequence applied to them.

1) Feature Generation: The chosen features to model are
extracted from the raw data and organized into vector time
series

Ry
_| Vs
Xom = | g (D

VR n,m

for each cycle number n € [1,N] and device number
m € [1, M]. The feature vectors are arranged from top to
bottom in the order that they occur in the measurement; Ry is
the resistance of the high-resistance state (HRS), Vs is the
voltage of the SET transition, Ry, is the resistance of the low-
resistance state (LRS), and Vy is the voltage at the start of the
RESET transition. The details of this feature extraction are
documented in [11].

Feature vector generation is based on a discrete
vector autoregressive (VAR) stochastic process (Fig. 3),

HENNEN et al.: SYNAPTOGEN: A CROSS-DOMAIN GENERATIVE DEVICE MODEL

5347

@ |,V measurement: Training direction (x1):
6,000 cycles of 512 devices (b) Parameter extraction N (d) Fit stochastic
(C) Normalizing process
transformation
[oW Ay 7 Axp = gB;x,,.,- + Cep
O e Pl T m N ,
Er e rrr. s - m/
P e Ve VeV Wk el ENH————
Cycle n Cycle n
Generative direction:
Inverse
(e) Realize stochastic process 63 trgs;r;?:if;zgn (g) Reconstruct ,V 22 y/i AA ji}i yz A ,;/; P
1 A4 A
1
™~ 1o [+1 s =T
RS e . Wior A 2 2
e S !\! — ;
v p . - AA S
UL : y PR AP
Cylen e A A

Fig. 4. Overview of the generative modeling approach. Training direction: (a) collect /, V data (N cycles x M devices), (b) extract feature vectors,
(c) learn a distribution of normalizing transformations, and (d) fit a stochastic process (VAR) to the normalized data. Generative direction: (e) realize
an independent VAR process for each simulated cell, (f) apply device-specific random de-normalizing transformations to the VAR outputs, and

(g) as voltages are applied, reconstruct /, V dependence of each cell.

which captures the cycle history dependence and the
correlations between features [13]. A VAR(p) models the nth
feature vector as a linear function of past values within cycle
range p and is driven by 4-D white noise €,. The stochastic
process has the easily computable form

14
Ax, = ZBixnfi + Ce, 2

i=1

where A, B;, and C are 4 x 4 weight matrices subject to
training.

To map the normally distributed output of the VAR process
to the joint empirical distribution measured across cycles and
across devices, we apply a sequence of invertible transforma-
tions. The parameters of these transformations are learned in a
single training pass in which the generative process is carried
out in reverse (Fig. 4). Thereby, the marginal distributions of
the extracted features are normalized in two steps. First, the
device-specific mean and variance over the sampled cycles
are standardized using an affine transformation W,, (Fig. 5).
Then, to further shape the intermediate probability densities
into normal distributions, the affine transformation is followed
by a parameterized, nonlinear quantile transform I'. A VAR(p)
process is then fit to the normalized data using least-squares
regression.

In the generative direction, the learned transformations are
inverted and applied to independent realizations of the VAR
process for each simulated device. The normalizing map I is
defined such that its inverse consists of elementwise polyno-
mial evaluations

y1(Rg)
72(Vs)
v3(RL)
va(VR)

where y; are the fourth-degree polynomials and are visualized
in Fig. 6.

I'x) = 3)

Device number

Re [kQ]

!

Wol(x)=p,, +0,X

A 0
. N
 =E RS

= £

25 0 25 25 0 25

Um(log10(RH [QD)) Wm(Vs VD) wm(Re [kQ)

25 0 25

WUm(VR [V])
Fig. 5. Ridgeline plots (stacked histograms) show a standardizing affine
transformation applied to a representative sample of 20 devices. The
forward transformation ¥, is applied in the training direction as a first
step to normalize the C2C feature distributions. Here, u,, and o, are
the sample means and standard deviations of the feature vectors for
device m across all the cycles, respectively. The inverse transformation
is used in the generative direction, where u}, and o7, are sampled from
a distribution estimated from the entire training set.

Device number

2] T T T T T T
(0] /
£ sl AN v A || A
g Vil ya' Y. Ya'
3 o0k b 1= {l— i
©
E 25b 1r 1F 1F .
[
zZ N 1 1 1 h 1 N

0 5 -5 0 0 5 0 5

Yn(logio(Ry [Q) Ym(Vs V) Wm(RL [kQD) Wm(VR [V])

Fig. 6. Elementwise nonlinear quantile transform I' adapted to the

training data. The inverse transformations are polynomial functions y;
designed for fast evaluation during the generative process. The nonlin-
earity allows the model to reproduce the training data’s nonnormal and
asymmetric distributions.

To restore device-specific offsets and scales to the generated
features, we invert W¥,, by approximating the distribution
of an 8-D block vector of sampled C2C means (u) and

5348 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 71, NO. 9, SEPTEMBER 2024
" MVN component index, weight
£ &2 k=0,wy=0.62
2 k=1,w;=0.34
2 k=2,w,=0.04
-~ 07}
Ss
3 08}
5 -
€g i
=X 4.5
SE 08 |
o
0.7
e:f 0.25
3 02 F
5
= 0.15 F
D & T T
0.15 | .
0 &
>5 01} 1=
\D/Za
0.05 | L
04 1
%e)
B = 02} 4
. 008f + 1
< &
> a
\62‘
0.03 < < T . 1
475 5 0.8 -07 45 5 07 08 015 0.2 025 005 01 015 0.2 04 004 0.08
H(logio(RH)) H(Vs) H(RL) H(VRr) o(logio(RH)) a(Vs) a(Rvc) a(VRr)
V] [kQ] V] vl [kQ] Y
Fig. 7. Correlative scatterplot of the feature means (1) and standard deviations (o) over all the cycles of devices in the training set. The

512 datapoints are fit and classified by a GMM with three Gaussian components (purple, yellow, and teal), which allows sampling of new mean and
standard deviation vectors in the generative process. Component k = 2 (teal) captures the multivariate structure of a device defect occurring in 4%
of devices. The diagonal subplots show that the weighted addition of the marginal probability distribution functions (PDFs) of the three components

closely fits the histograms of the input data.

standard deviations (o)

M(RH,n)
M(VS,n)
/’L(RL,n)
M(VR,n)
G(RH,n)
o (Vs,n)
0'(RL,n)
U(VR,n)

This distribution is represented by a superposition of mul-
tivariate normal (MVN) distributions, which is known as a
Gaussian mixture model (GMM). A GMM is cheap to sample
from and allows a close fit of the covariance structure of the
main cluster of §,, datapoints. The GMM also captures the
structure of statistical abnormalities that occur (i.e., defective
devices), which may have a disproportionate impact on system
performance. A three-component GMM, denoted

Si;=[”;"}
am

“4)

m

®)

is fit to the empirical distribution by the expectation—
maximization algorithm using k-means initialization and is
visualized in Fig. 7.

Note that all-positive features with logarithmically skewed
distributions may be logged before training and exponentiated
after generation to assist with the normalization and to prevent
generation of negative values. In the present case, this log
transformation is used only for the Ry feature.

2) Modeling the I(V) Dependence: The nonlinear I (V) state
for each cell is modeled as a linear combination of two
static, global limiting polynomials Iy (V) and Iy (V) whose
coefficients are estimated from the training data. This way, the
model can reproduce a wide variety of asymmetric nonlinear-
ities present in both HRS and LRS and can also interpolate
between them to represent intermediate resistance states. The
degrees of the polynomials are untrained hyperparameters and
can be adapted as necessary to suit the amount of nonlinearity
in the training data. In the present case, Iy (V) and I (V) were
chosen to have degree 5 and 6, respectively, empirically large
enough to capture the inherent nonlinearity of the HRS and
also the shape of the series transistor curve visible in the LRS.

HENNEN et al.: SYNAPTOGEN: A CROSS-DOMAIN GENERATIVE DEVICE MODEL

5349

200 F T T T T T 3

100

Current [uA]
o

-100

-200

-0.5 0.0 0.5 1.0
Voltage, V [V]

Fig. 8. Exemplary I, V cycle reconstructed from its feature vector
representation. States are bounded by polynomials /y(V) and I (V).
Intermediate states (weights) are programmed by applying a voltage
between Vg and Vmax. Experimental traces (black) are plotted in the
background for reference.

Resistance levels of the devices are tracked by continuous
state variables r,, € (0, 1), which represent the degree of
mixing between the predefined limiting polynomials. The
current as a function of voltage for device m assumes the
form

Im(rmv V)ZrinIH(V)+(1 _rm)IL(V)' (6)

The state variable corresponding to each generated resistance
level R is calculated using the function
1. (Vo) — VoR'

1. (Vo) — Iu(Vo)
which uniquely sets the static resistance of the device (evalu-
ated at Vy = 0.2 V) equal to R.

Transitions of the state variables occur when the voltage
applied to a device exceeds the threshold levels for SET
or RESET in its current cycle. The transitions connect each
generated resistance state to the following one, as illustrated in
Fig. 8. Below the SET threshold Vg ,, there is an instantaneous
transition from resistance state Ry, to Ry ,. After SET has
occurred, voltages above Vg, gradually shift the resistance
state from Ry , to Ry 4. This gradual RESET proceeds such
that the device current has an empirical functional form

r(R))

IReseT(V) = a(Vinax — V)T + ¢ (3
where
Itrs,n (VR.n) — Turs i1 (Vinax)
= 7 &)
(Vmax - VR,n)
and
¢ = Iyrs,n+1(Vimax) (10)

satisfy the transition boundary conditions. Here, Vi, is the
maximum voltage applied in the experimental sweeps, and the
constant n &~ 3.0 sets the curvature of the RESET transition
as estimated by a least-squares fit to the training data.

In this scheme, the state evolution of a device is determined
by the discrete sequence of voltages applied to it. While the
model has no internal representation of time, the training
data carry information about the resistive switching dynamics

at the timescale used for its measurement. As such, the
simulation timescale is assumed to be appropriately matched
with the experimental timescale used to collect the training
data. Furthermore, while the training data are collected using
continuous voltage sweeps, it is also common to program
memory cells by applying (square) voltage pulses. Triangle
sweeps are used to capture more information each cycle,
helping the base VAR process maintain causal consistency
without generating unphysical correlations. However, this does
not preclude simulation of differently shaped pulses, within the
approximation that such pulses produce the same effect on
the device as a ramp to the same voltage at the experimental
sweep rate (7 kVs~!). One caveat is that repeated application
of pulses with the same voltage amplitude will not have a
cumulative effect on resistance states, and intermediate states
must instead be programmed through application of voltage
amplitudes in the RESET range. Nevertheless, the model
captures the resistance variations inherent to the material
system, which we expect to be comparable between alternative
programming methods.

C. Implementation and Benchmarks

Using easily evaluated polynomials and matrix multiplica-
tions throughout, Synaptogen is designed for high throughput
and parallelization. We recently benchmarked an implementa-
tion in the Julia programming language, comparable with the
present model in terms of speed, demonstrating the practicality
of simulating large-scale physical neural networks with over
10° weights [11]. However, due to the growing interest in
simulating networks at the circuit level, efficient stochastic
device models implemented in an HDL are currently highly
sought after [2], [3], [4].

To suit a circuit design ecosystem and to compare speeds
with alternative models, we implemented Synaptogen in the
Verilog-A HDL. Special programming requirements were
imposed by the adaptation to a transient model description
and by the weak support for dynamic structures in Verilog-A.
Furthermore, due to the discontinuities at the threshold volt-
ages, the simulation step size was limited locally at each device
threshold to aid convergence. The order of the VAR process
in the Verilog-A implementation was fixed to p = 10.

Simulation speeds were compared with a minimalistic
nonstochastic linear ion drift model (LinearDrift) as a base-
line [14], as well as the more complex physics-based Jiilich
Aachen Resistive Switching Tool (JART) v1b variability-aware
model [2]. Read speeds are also compared with randomly
initialized arrays of ohmic resistances, a linearly solvable
problem which gives an upper bound for the speed of the
simulation framework.

We benchmarked the read and write performance for both
parallel operation of M independent cells and for vM x /M
crossbar arrays with resistive leads (5 €2 between every circuit
node). This distinction is important because lead resistance
has a strong impact on the system, but is much slower to
solve due to the strongly coupled equations [15], [16], [17].
For the purpose of comparing simulation speeds between the
independent device and crossbar-connected cases, the same

5350

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 71, NO. 9, SEPTEMBER 2024

Fig. 9. For write tests, the image (a) was desaturated, resampled, and
each pixel value was written as an intermediate resistance state of the
individual devices in a crossbar array (0-2 lead resistance). The results
for Synaptogen-based arrays are shown, with dimensions (b) 32 x 32,
(c) 64 x 64, (d) 128 x 128, and (e) 256 x 256.

applied voltage waveform was shared by rows and columns
of the independent devices as though they were connected by
WLs and BLs. This makes the problem equivalent to a crossbar
array with zero lead resistance, but in practice is significantly
faster than enforcing crossbar connectivity in the netlist.

Simulations were performed using the Cadence Spectre
simulator with “moderate” settings for both the “accelerated
parallel simulator” (APS) and error tolerance, running on eight
(out of 18) cores of Intel Xeon Gold 6154 CPU. Square bipolar
voltage pulses were applied to the WL terminals to simulate
read/write operations, and the throughput in operations per sec-
ond (OPS) was calculated as the number of devices involved
in the read/write process divided by the total time taken for
the transient analysis.

For weight programming benchmarks, differently sized
arrays of devices were initialized in an LRS before writing
grayscale image data (one pixel value per device) as interme-
diate resistance states (Fig. 9). The pixel values were linearly
mapped to a suitable positive voltage range for partial RESET,
and using a half-select voltage scheme [18], the voltages
were sequentially applied to the corresponding cells for 1 us.
For situations where the entire array could not be written in
a practical amount of time, the throughput was determined
by writing a 16 x 16 subblock of devices. For readout
benchmarks, 200-mV pulses were simultaneously applied to
all WLs for 1 ns as current was measured at the grounded BL
terminals. The results of the read and write benchmarks for
all the device models are summarized in Fig. 10.

I1l. RESULTS AND DISCUSSION

The described hierarchical modeling approach efficiently
generates feature vectors that closely resemble the training
data. This can be verified visually by comparing the time
series behavior of the measurement data with the output
of the generative model (Fig. 11) and also numerically by
comparing the correlations between each feature (Table I).
Feature distributions are very closely replicated, including
the covariations in the C2C distributions between different

Independent devices
I JART Bl LinearDrift Il SynaptoGen Il Ohmic
Crossbar connected devices
=S JART X1 LinearDrift 551 SynaptoGen 51 Ohmic

(a)

Read throughput [OPS]

4,096 65,536 1,048,576

(64x64) (256%256) (1024x1024)

D)

O An3 Bl e .

5

3]

o

e \ - | | ... -

2 \ \

2 N . i\

= 256 1,024 4,096 16,384 65,536
(16x16) (32x32) (64x64) (128x128) (256x256)

Number of devices (M)

Fig. 10. Benchmarks of different Verilog-A models for (a) reading and
(b) writing M independent devices and v/M x /M resistive crossbars.
For the largest arrays, the JART model did not terminate.

TABLE |
CORRELATIONS' OF MEASURED/GENERATED FEATURES
RH,n VS,n RL,n VR,n
Ry n_1 0.13/0.13 (0.05 /7 0.05) 0.05 /7 0.05 (0.01 7/ 0.01)
Vin—1 (0.05 / 0.05) 0.17 / 0.17 (0.06 / 0.06) (0.05 / 0.05)
Rpn—1 0.04 / 0.04 (0.05 7 0.06) 0.49 / 0.49 0.13/0.14
VR,n—1 (0.01 /0.01) (0.04 / 0.05) 0.13/0.13 0.29/0.32
Ry 1.00 / 1.00 (0.22 /7 0.23) 0.05 / 0.05 (0.01 /7 0.01)
Van 1.00 / 1.00 (0.07 /0.07) (0.04 / 0.05)
Ry.n 1.00 / 1.00 0.18/0.18
VR,n 1.00 / 1.00

I Pearson correlation coefficients (intra-cycle and with one cycle lag) were
calculated for each device and averaged. All Ryy values were logged before
the calculation. Negative values are parenthesized.

devices, as well as the total marginal distributions over all
the cycles and devices (Fig. 12).

For all the models and conditions, read operations were
significantly faster than writes, and speeds were much higher
for independent devices than for an equal number of crossbar
connected devices. Synaptogen wrote at ~10° OPS for inde-
pendent devices, but started at 13 OPS for 16 x 16 crossbars,
degrading with crossbar size to only 0.3 OPS at 256 x 256.
For readout, Synaptogen is competitive with simple ohmic
resistive networks, reaching 60%—80% of their speed in most
cases. The throughput of these read operations increased for
larger numbers of devices, with 8 x 103 OPS for 256 devices
and 4 x 10° OPS for 1048576 devices. Crossbar-connected
readouts were slowed by 2—4 orders of magnitude relative
to independent devices as the array size increased from
16 x 16 to 256 x 256.

Synaptogen was between 10x and 100x faster than
LinearDrift for all the benchmarks, which is remarkable
because LinearDrift is a very simple ordinary differential
equation (ODE) formulation for which the simulator should

HENNEN et al.: SYNAPTOGEN: A CROSS-DOMAIN GENERATIVE DEVICE MODEL 5351

Device 1

(@ oo e !

log10(RH [Q]) °7 [oaaass
45

Device2 Device3 Device4 Device5 Device6 Device7 Device8 Device9 Device 10

Vs [V] —0.75 [
-1.00
R. [kQ] sk
Vg [V]
logio(Rw [Q]) R bkl o SR TEIR ST TR ST T T) FeAry O I M XAt PRETRN, O er
T = TR YT W~ ST IR WG T W) ey VR 77PN VIR: PRV WP e
VS [V] -0.75 F ‘ T R R T T o A o Bk o s A Ml R s Lk 2 B o o ki o Rl gtot B
-1.00 o7 -
Ry [kQ she o &
4 .
VR [V] 0.8

0.6

Cycle number / 1000

Fig. 11. Comparison between (a) measured and (b) generated feature vector time series across 6000 cycles for ten randomly selected devices.
Visual inspection confirms that the model closely reproduces the variability between devices and the cycling cross-correlations.

be well-adapted. Furthermore, LinearDrift does not include
C2C or D2D variability and cannot reproduce many important
switching features of actual devices. Synaptogen even more
significantly outperforms the JART vlb variability model,

TABLE Il
ESTIMATED TIME REQUIRED FOR NEURAL NETWORK OPERATIONS
USING SYNAPTOGEN WEIGHTS IN THE CADENCE
SPECTRE SIMULATOR

which is more closely comparable in terms of covered device Layer size Weight Initialization Inference
behavior. Due to its complexity and implicit formulation, Independent Crossbar Independent Crossbar
JART perform?nce degrades faster than tbe other models 16x16 160 ms 20 s 34 ms 54 ms
as the array size grows; for JART array sizes 256 x 256 32x32 660 ms 4.9 min
and above, not even a single write operation could be 64x64 23s Llh 92 ms 1.0s

. : 128x128 135 1.5d
performed in a reasonable time frame. At 1024 x 1024, 256%256 1.4 min 254 82 ms 28 s
read operations were also impossible. For the conditions that 1024x1024 300 ms 9.6 min

could be simulated, operations on independent Synaptogen
devices were always over 100x faster, with the speed of
writes approximately 200x, and reads reaching 6000x those
of JART. For the resistive crossbar simulations, Synaptogen
was between 10x and 100x faster for 64 x 64 and smaller
arrays, and between 100x and 10000x for larger arrays.
While analog circuit simulations are indispensable for
time-domain analysis of systems, they face intrinsic speed lim-
itations due to the computation necessary at each time step to
converge on solutions to large systems of nonlinear differential
equations. Furthermore, circuit simulations lack the regular
memory access pattern typical of ML, and their data-dependent
control flow makes it challenging for them to take advantage
of GPU acceleration. Even with dramatic speed increases
over competing models, simulations in Cadence Spectre with
Synaptogen-based synapses still have clear practical limita-
tions for training and inference with fully connected neural
network layers. Table II shows the time necessary to write
pretrained weights and to perform a single-layer inference
operation according to our benchmarks. Many operations can
be completed in well under a second, while others (such
as writing to large resistively coupled crossbars) can take
a considerable amount of time (hours or days). This may
limit the ability to simulate entire analog ML chips at once,

but investigations are possible the level of individual cores,
comprising, e.g., 256 x 256 devices [19], [20].

As modern ML networks commonly exceed millions of
weights, the benchmarks reported here highlight the need
to extend the device model’s applicability to larger scales.
Therefore, while the Verilog-A implementation provides com-
patibility with circuit design tools, we also implemented
Synaptogen in the Julia programming language. The internal
operation is the same for both the models, while the latter
achieves orders of magnitude (>3 orders for read, >6 orders
for write) higher speeds by avoiding transient calculations and
through parallel execution on CPUs and GPUs [11]. This
high-level model is well-suited for integration with analog
compute-in-memory software frameworks to incorporate more
realistic device behavior without compromising on speed. The
existing frameworks commonly interface with well-known ML
libraries such as PyTorch and achieve speeds within 5x of
conventional floating-point training and inference [21], [22],
[23], [24], [25], [26], [27], [28].

Finally, because Synaptogen focuses on directly reproducing
measured quantities in a generalized way, the same concept

5352

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 71, NO. 9, SEPTEMBER 2024

B Measured
——Generated

I Measured
——Generated

[Measured
——Generated

B Measured
——Generated

(a

=

Total
Histogram

Measured device #

Generated device #

-1 -0.75 4 5 06 08

logao(Rw [Q]) Vs [V] Re [kQ] Vr [V]

Fig. 12. Comparison between the measured and generated distribu-
tions for 6000 cycles of 256 devices. Total marginal feature distributions,
including every cycle of every device, are compared in (a), and the ridge-
line plots (stacked histograms) in (b) show the distributions conditioned
on device number. The C2C distributions and their D2D covariances are
very closely replicated by the generative model.

can also be adapted to different memory technologies based
on other physical effects, such as ferroelectric, magnetic,
correlated electron, and phase change memories [29], [30],
[31], [32]. In this work, we selected four specific switching
characteristics to encode the (I, V) cycling behavior. However,
the generative framework allows for the incorporation of
additional features derived from experimental measurements.
Based on new statistical data, various functional forms,
transition dynamics, temporal dependencies, and underlying
stochastic processes can be integrated as required.

IV. CONCLUSION

In this work, we developed a generative compact model
for resistive memories that seamlessly adapts to statistical
measurements of real-world devices through an automated
training procedure. We show that the model closely captures
the nonlinearity, cross-correlations, and both the C2C and D2D
variability of electrical data measured on integrated ReRAM
devices. While an equivalent model can be used in a high-level
programming domain for larger scale simulations, here we
demonstrate its use in analog circuit simulation of 1TI1R
arrays. The implemented circuit-level model operates orders of

magnitude faster for reading and writing compared with other
compact models, and we demonstrate crossbar programming
(256 x 256 devices) and readout (1024 x 1024 devices)
at scales which exceed what was previously possible in the
analog circuit simulation domain.

CODE AVAILABILITY

The Verilog-A compact model and its Julia counter-
part are available on GitHub (https://github.com/thennen/
synaptogen) and archived in Zenodo (https://zenodo.org/doi/
10.5281/zenodo.10942560).

REFERENCES

[1] C. Nail et al., “Understanding RRAM endurance, retention and window

margin trade-off using experimental results and simulations,” in JEDM

Tech. Dig., Dec. 2016, pp. 451-454, doi: 10.1109/IEDM.2016.7838346.

C. Bengel et al., “Variability-aware modeling of filamentary oxide-based

bipolar resistive switching cells using SPICE level compact models,”

IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 12, pp. 4618-4630,

Dec. 2020.

[3] V. Ntinas et al., “A simplified variability-aware VCM memristor model

for efficient circuit simulation,” in Proc. 19th Int. Conf. Synth., Model.,

Anal. Simul. Methods Appl. Circuit Design (SMACD), Jul. 2023, pp. 1-4,

doi: 10.1109/SMACD58065.2023.10192107.

J. Reuben, M. Biglari, and D. Fey, “Incorporating variability of resistive

RAM in circuit simulations using the Stanford-PKU model,” IEEE

Trans. Nanotechnol., vol. 19, pp. 508-518, 2020.

Z. Jiang et al., “A compact model for metal-oxide resistive random

access memory with experiment verification,” IEEE Trans. Electron

Devices, vol. 63, no. 5, pp. 1884-1892, May 2016.

F. M. Puglisi, L. Larcher, A. Padovani, and P. Pavan, “Bipolar resistive

RAM based on HfO,: Physics, compact modeling, and variability

control,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 6, no. 2,

pp. 171-184, Jun. 2016.

[71 N. Gong et al., “Signal and noise extraction from analog memory
elements for neuromorphic computing,” Nature Commun., vol. 9, no. 1,
p. 2102, May 2018, doi: 10.1038/s41467-018-04485-1.

[8] V. Agrawal et al., “Subthreshold operation of SONOS analog memory
to enable accurate low-power neural network inference,” in IEDM
Tech. Dig., Dec. 2022, pp. 2171-2174.

[9]1 R. Naous, M. Al-Shedivat, and K. N. Salama, “Stochasticity modeling

in memristors,” IEEE Trans. Nanotechnol., vol. 15, no. 1, pp. 15-28,

Jan. 2016, doi: 10.1109/TNANO.2015.2493960.

R. Picos, J. B. Roldan, M. M. A. Chawa, F. Jimenez-Molinos, and

E. Garcia-Moreno, “A physically based circuit model to account for

variability in memristors with resistive switching operation,” in Proc.

Conf. Design Circuits Integr. Syst. (DCIS), Granada, Spain, Nov. 2016,

pp. 1-6, doi: 10.1109/DCIS.2016.7845383.

[11] T. Hennen et al., “A high throughput generative vector autoregression

model for stochastic synapses,” Frontiers Neurosci., vol. 16, Aug. 2022,

Art. no. 941753, doi: 10.3389/fnins.2022.941753.

A. Grossi et al, “Fundamental variability limits of filament-

based RRAM,” in IEDM Tech. Dig., Dec. 2016, pp. 471-474, doi:

10.1109/IEDM.2016.7838348.

[13] J. D. Hamilton, Time Series Analysis. Princeton, NJ, USA: Princeton

Univ. Press, 1994.

S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “TEAM:

ThrEshold adaptive memristor model,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 60, no. 1, pp. 211-221, Jan. 2013.

[15] T. P. Xiao, B. Feinberg, J. N. Rohan, C. H. Bennett, S. Agarwal,

and M. J. Marinella, “Analysis and mitigation of parasitic resistance

effects for analog in-memory neural network acceleration,” Semicon-
ductor Sci. Technol., vol. 36, no. 11, Nov. 2021, Art. no. 114004, doi:
10.1088/1361-6641/ac271a.

A. Chen, “A highly efficient and scalable model for crossbar arrays with

nonlinear selectors,” in IEDM Tech. Dig., Dec. 2018, pp. 3721-3724,

doi: 10.1109/IEDM.2018.8614505.

D. Joksas and A. Mehonic, “Badcrossbar: A Python tool for computing

and plotting currents and voltages in passive crossbar arrays,” SoftwareX,

vol. 12, Jul. 2020, Art. no. 100617, doi: 10.1016/j.s0ftx.2020.100617.

[2

—

[4

=

[5

=

[6

=

[10]

[12]

[14]

[16]

[17]

http://dx.doi.org/10.1109/IEDM.2016.7838346
http://dx.doi.org/10.1109/SMACD58065.2023.10192107
http://dx.doi.org/10.1038/s41467-018-04485-1
http://dx.doi.org/10.1109/TNANO.2015.2493960
http://dx.doi.org/10.1109/DCIS.2016.7845383
http://dx.doi.org/10.3389/fnins.2022.941753
http://dx.doi.org/10.1109/IEDM.2016.7838348
http://dx.doi.org/10.1088/1361-6641/ac271a
http://dx.doi.org/10.1109/IEDM.2018.8614505
http://dx.doi.org/10.1016/j.softx.2020.100617

HENNEN et al.: SYNAPTOGEN: A CROSS-DOMAIN GENERATIVE DEVICE MODEL

5353

(18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Chen, “Analysis of partial bias schemes for the writing of
crossbar memory arrays,” [EEE Trans. Electron Devices, vol. 62,
no. 9, pp.2845-2849, Sep. 2015, doi: 10.1109/TED.2015.
2448592.

M. Le Gallo et al., “A 64-core mixed-signal in-memory compute
chip based on phase-change memory for deep neural network infer-
ence,” Nature Electron., vol. 6, no. 9, pp. 680693, Aug. 2023, doi:
10.1038/541928-023-01010-1.

W. Wan et al., “A compute-in-memory chip based on resistive
random-access memory,” Nature, vol. 608, no. 7923, pp. 504-512,
Aug. 2022.

Z. Zhu et al, “MNSIM 2.0: A behavior-level modeling tool
for processing-in-memory architectures,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 42, no. 11, pp. 4112-4125, Nov. 2023,
doi: 10.1109/TCAD.2023.3251696.

C. Lammie, W. Xiang, B. Linares-Barranco, and M. R. Azghadi,
“MemTorch: An open-source simulation framework for memristive deep
learning systems,” Neurocomputing, vol. 485, pp. 124-133, May 2022,
doi: 10.1016/j.neucom.2022.02.043.

X. Peng, S. Huang, H. Jiang, A. Lu, and S. Yu, “DNN+NeuroSim
V2.0: An end-to-end benchmarking framework for compute-in-memory
accelerators for on-chip training,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 40, no. 11, pp. 2306-2319, Nov. 2021, doi:
10.1109/TCAD.2020.3043731.

M. J. Rasch et al.,, “A flexible and fast PyTorch toolkit for sim-
ulating training and inference on analog crossbar arrays,” in Proc.
IEEE 3rd Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Jun. 2021,
pp. 1-4.

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

S. Roy, S. Sridharan, S. Jain, and A. Raghunathan, “TxSim: Modeling
training of deep neural networks on resistive crossbar systems,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 29, no. 4, pp. 730-738,
Apr. 2021.

S. Jain, A. Sengupta, K. Roy, and A. Raghunathan, “RxNN: A frame-
work for evaluating deep neural networks on resistive crossbars,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 2,
pp. 326-338, Feb. 2021.

T. P. Xiao, C. H. Bennett, B. Feinberg, M. J. Marinella, and
S. Agarwal. CrossSim: Accuracy Simulation of Analog In-Memory
Computing. Accessed: Jun. 6, 2024. [Online]. Available: https://github.
com/sandialabs/cross-sim

D. Kireev et al., “Metaplastic and energy-efficient biocompatible
graphene artificial synaptic transistors for enhanced accuracy neuromor-
phic computing,” Nature Commun., vol. 13, no. 1, p. 4386, Jul. 2022,
doi: 10.1038/s41467-022-32078-6.

H. Ning et al.,, “An in-memory computing architecture based on a
duplex two-dimensional material structure for in situ machine learning,”
Nature Nanotechnol., vol. 18, no. 5, pp. 493-500, May 2023, doi:
10.1038/541565-023-01343-0.

H. Liu et al., “Dynamics of spin torque switching in all-perpendicular
spin valve nanopillars,” J. Magn. Magn. Mater., vols. 358-359,
pp. 233-258, May 2014, doi: 10.1016/j.jmmm.2014.01.061.

Y. Zhou and S. Ramanathan, “Mott memory and neuromorphic
devices,” Proc. IEEE, vol. 103, no. 8, pp. 1289-1310, Aug. 2015, doi:
10.1109/JPROC.2015.2431914.

M. L. Gallo and A. Sebastian, “An overview of phase-change memory
device physics,” J. Phys. D, Appl. Phys., vol. 53, no. 21, p. 213002,
Mar. 2020.

http://dx.doi.org/10.1109/TED.2015.2448592
http://dx.doi.org/10.1109/TED.2015.2448592
http://dx.doi.org/10.1109/TED.2015.2448592
http://dx.doi.org/10.1038/s41928-023-01010-1
http://dx.doi.org/10.1109/TCAD.2023.3251696
http://dx.doi.org/10.1016/j.neucom.2022.02.043
http://dx.doi.org/10.1109/TCAD.2020.3043731
http://dx.doi.org/10.1038/s41467-022-32078-6
http://dx.doi.org/10.1038/s41565-023-01343-0
http://dx.doi.org/10.1016/j.jmmm.2014.01.061
http://dx.doi.org/10.1109/JPROC.2015.2431914

