001030589 001__ 1030589
001030589 005__ 20241108205838.0
001030589 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05342
001030589 037__ $$aFZJ-2024-05342
001030589 041__ $$aEnglish
001030589 1001_ $$0P:(DE-Juel1)191583$$aVillamar, Jose$$b0$$eCorresponding author$$ufzj
001030589 1112_ $$aInternational Conceference on Neuromorphic Computing and Engineering$$cAachen$$d2024-06-03 - 2024-06-06$$gICNCE 2024$$wGermany
001030589 245__ $$aPreparing for exascale computing: Large-scale neuronal network construction through parallel GPU memory instantiation
001030589 260__ $$c2024
001030589 3367_ $$033$$2EndNote$$aConference Paper
001030589 3367_ $$2BibTeX$$aINPROCEEDINGS
001030589 3367_ $$2DRIVER$$aconferenceObject
001030589 3367_ $$2ORCID$$aCONFERENCE_POSTER
001030589 3367_ $$2DataCite$$aOutput Types/Conference Poster
001030589 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1731050161_29012$$xAfter Call
001030589 520__ $$aEfficient simulation of large-scale spiking neuronal networks is important for neuroscientific research, and both the simulation speed and the time it takes to instantiate the network in computer memory are key factors. NEST GPU demonstrates high simulation speeds with models of various network sizes on single-GPU and multi-GPU systems[1,2]. Using a single GPU, networks on the order of 10^5 neurons and 10^9 synapses can already be instantiated in less than a second[3]. On the path toward models of the whole brain, neuroscientists show an increasing interest in studying networks that are larger by several orders of magnitude. However, the time needed to construct such large network models was so far a restrictive factor for simulating them.	With the aim to fully exploit available and upcoming computing resources for computational neuroscience, we here propose a novel method to efficiently instantiate large networks on multiple GPUs in parallel. Our approach relies on the determinism dependent on the initial state of pseudo-random number generators (PRNGs). Starting from a unique common master RNG seed, a two-dimensional array of seeds is generated, with one seed for each possible pair of source-target MPI processes. These seeds are used to generate the connectivity between each of such pairs. The connections are stored only in the GPU memory of the target MPI process. By synchronising the construction directives, each MPI process does not need to share information on the obtained connectivity after each instruction but can construct its relevant connections by generating the same sequence of random states as the other MPI processes. The method is evaluated through a two-population recurrently connected network designed for benchmarking a variety of commonly used high-level connection rules[4].	Furthermore, we validate the simulation performance with a multi-area model of macaque vision-related cortex[2,5], made up of about 4 million neurons and 24 billion synapses. Lastly we compare our results with other state-of-the-art simulation technologies across varying network sizes using a highly scalable network model[6].[1]	Golosio et al. Front. Comput. Neurosci. 15:627620, 2021.[2]	Tiddia et al. Front. Neuroinform. 16:883333, 2022.[3]	Golosio et al. Appl. Sci. 13, 9598, 2023.[4]	Senk et al. PLoS Comput Biol. 18(9): e1010086. 2022.[5] 	Schmidt et al. PLoS Comput Biol. 14(10): e1006359, 2018.[6]	Kunkel et al. Front. Neuroinform. 8:78, 2014.
001030589 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001030589 536__ $$0G:(DE-Juel-1)ZT-I-PF-3-026$$aMetaMoSim - Generic metadata management for reproducible high-performance-computing simulation workflows - MetaMoSim (ZT-I-PF-3-026)$$cZT-I-PF-3-026$$x1
001030589 536__ $$0G:(DE-Juel1)jinb33_20220812$$aBrain-Scale Simulations (jinb33_20220812)$$cjinb33_20220812$$fBrain-Scale Simulations$$x2
001030589 536__ $$0G:(EU-Grant)800858$$aICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858)$$c800858$$fH2020-SGA-INFRA-FETFLAG-HBP$$x3
001030589 536__ $$0G:(DE-Juel-1)HiRSE_PS-20220812$$aHelmholtz Platform for Research Software Engineering - Preparatory Study (HiRSE_PS-20220812)$$cHiRSE_PS-20220812$$x4
001030589 7001_ $$0P:(DE-HGF)0$$aGolosio, Bruno$$b1
001030589 7001_ $$0P:(DE-HGF)0$$aTiddia, Gianmarco$$b2
001030589 7001_ $$0P:(DE-HGF)0$$aSergi, Luca$$b3
001030589 7001_ $$0P:(DE-HGF)0$$aPontisso, Luca$$b4
001030589 7001_ $$0P:(DE-HGF)0$$aSimula, Francesco$$b5
001030589 7001_ $$0P:(DE-HGF)0$$aLonardo, Alessandro$$b6
001030589 7001_ $$0P:(DE-HGF)0$$aPastorelli, Elena$$b7
001030589 7001_ $$0P:(DE-HGF)0$$aPaolucci, Pier Stanislao$$b8
001030589 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b9$$ufzj
001030589 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b10$$ufzj
001030589 7001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b11$$ufzj
001030589 8564_ $$uhttps://juser.fz-juelich.de/record/1030589/files/Poster.pdf$$yOpenAccess
001030589 8564_ $$uhttps://juser.fz-juelich.de/record/1030589/files/Poster.gif?subformat=icon$$xicon$$yOpenAccess
001030589 8564_ $$uhttps://juser.fz-juelich.de/record/1030589/files/Poster.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001030589 8564_ $$uhttps://juser.fz-juelich.de/record/1030589/files/Poster.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001030589 8564_ $$uhttps://juser.fz-juelich.de/record/1030589/files/Poster.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001030589 909CO $$ooai:juser.fz-juelich.de:1030589$$popenaire$$popen_access$$pVDB$$pdriver$$pec_fundedresources
001030589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191583$$aForschungszentrum Jülich$$b0$$kFZJ
001030589 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)191583$$aRWTH Aachen$$b0$$kRWTH
001030589 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Dipartimento di Fisica, Università di Cagliari, Monserrato, Italy$$b1
001030589 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, Monserrato, Italy$$b1
001030589 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Dipartimento di Fisica, Università di Cagliari, Monserrato, Italy$$b2
001030589 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, Monserrato, Italy$$b2
001030589 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Dipartimento di Fisica, Università di Cagliari, Monserrato, Italy$$b3
001030589 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, Monserrato, Italy$$b3
001030589 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy$$b4
001030589 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy$$b5
001030589 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy$$b6
001030589 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy$$b7
001030589 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy$$b8
001030589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b9$$kFZJ
001030589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b10$$kFZJ
001030589 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b11$$kFZJ
001030589 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001030589 9141_ $$y2024
001030589 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001030589 920__ $$lno
001030589 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0
001030589 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x1
001030589 980__ $$aposter
001030589 980__ $$aVDB
001030589 980__ $$aUNRESTRICTED
001030589 980__ $$aI:(DE-Juel1)IAS-6-20130828
001030589 980__ $$aI:(DE-Juel1)INM-10-20170113
001030589 9801_ $$aFullTexts