001     1030589
005     20241108205838.0
024 7 _ |a 10.34734/FZJ-2024-05342
|2 datacite_doi
037 _ _ |a FZJ-2024-05342
041 _ _ |a English
100 1 _ |a Villamar, Jose
|0 P:(DE-Juel1)191583
|b 0
|e Corresponding author
|u fzj
111 2 _ |a International Conceference on Neuromorphic Computing and Engineering
|g ICNCE 2024
|c Aachen
|d 2024-06-03 - 2024-06-06
|w Germany
245 _ _ |a Preparing for exascale computing: Large-scale neuronal network construction through parallel GPU memory instantiation
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1731050161_29012
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Efficient simulation of large-scale spiking neuronal networks is important for neuroscientific research, and both the simulation speed and the time it takes to instantiate the network in computer memory are key factors. NEST GPU demonstrates high simulation speeds with models of various network sizes on single-GPU and multi-GPU systems[1,2]. Using a single GPU, networks on the order of 10^5 neurons and 10^9 synapses can already be instantiated in less than a second[3]. On the path toward models of the whole brain, neuroscientists show an increasing interest in studying networks that are larger by several orders of magnitude. However, the time needed to construct such large network models was so far a restrictive factor for simulating them. With the aim to fully exploit available and upcoming computing resources for computational neuroscience, we here propose a novel method to efficiently instantiate large networks on multiple GPUs in parallel. Our approach relies on the determinism dependent on the initial state of pseudo-random number generators (PRNGs). Starting from a unique common master RNG seed, a two-dimensional array of seeds is generated, with one seed for each possible pair of source-target MPI processes. These seeds are used to generate the connectivity between each of such pairs. The connections are stored only in the GPU memory of the target MPI process. By synchronising the construction directives, each MPI process does not need to share information on the obtained connectivity after each instruction but can construct its relevant connections by generating the same sequence of random states as the other MPI processes. The method is evaluated through a two-population recurrently connected network designed for benchmarking a variety of commonly used high-level connection rules[4]. Furthermore, we validate the simulation performance with a multi-area model of macaque vision-related cortex[2,5], made up of about 4 million neurons and 24 billion synapses. Lastly we compare our results with other state-of-the-art simulation technologies across varying network sizes using a highly scalable network model[6].[1] Golosio et al. Front. Comput. Neurosci. 15:627620, 2021.[2] Tiddia et al. Front. Neuroinform. 16:883333, 2022.[3] Golosio et al. Appl. Sci. 13, 9598, 2023.[4] Senk et al. PLoS Comput Biol. 18(9): e1010086. 2022.[5] Schmidt et al. PLoS Comput Biol. 14(10): e1006359, 2018.[6] Kunkel et al. Front. Neuroinform. 8:78, 2014.
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
536 _ _ |a MetaMoSim - Generic metadata management for reproducible high-performance-computing simulation workflows - MetaMoSim (ZT-I-PF-3-026)
|0 G:(DE-Juel-1)ZT-I-PF-3-026
|c ZT-I-PF-3-026
|x 1
536 _ _ |a Brain-Scale Simulations (jinb33_20220812)
|0 G:(DE-Juel1)jinb33_20220812
|c jinb33_20220812
|f Brain-Scale Simulations
|x 2
536 _ _ |a ICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858)
|0 G:(EU-Grant)800858
|c 800858
|f H2020-SGA-INFRA-FETFLAG-HBP
|x 3
536 _ _ |a Helmholtz Platform for Research Software Engineering - Preparatory Study (HiRSE_PS-20220812)
|0 G:(DE-Juel-1)HiRSE_PS-20220812
|c HiRSE_PS-20220812
|x 4
700 1 _ |a Golosio, Bruno
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tiddia, Gianmarco
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sergi, Luca
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Pontisso, Luca
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Simula, Francesco
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lonardo, Alessandro
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Pastorelli, Elena
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Paolucci, Pier Stanislao
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 9
|u fzj
700 1 _ |a Morrison, Abigail
|0 P:(DE-Juel1)151166
|b 10
|u fzj
700 1 _ |a Senk, Johanna
|0 P:(DE-Juel1)162130
|b 11
|u fzj
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1030589/files/Poster.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1030589/files/Poster.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1030589/files/Poster.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1030589/files/Poster.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1030589/files/Poster.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1030589
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)191583
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)191583
910 1 _ |a Dipartimento di Fisica, Università di Cagliari, Monserrato, Italy
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, Monserrato, Italy
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Dipartimento di Fisica, Università di Cagliari, Monserrato, Italy
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, Monserrato, Italy
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Dipartimento di Fisica, Università di Cagliari, Monserrato, Italy
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, Monserrato, Italy
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)151166
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)162130
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21