001030616 001__ 1030616
001030616 005__ 20250206215502.0
001030616 0247_ $$2doi$$a10.1088/2058-9565/ad6285
001030616 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05349
001030616 0247_ $$2WOS$$aWOS:001282693900001
001030616 037__ $$aFZJ-2024-05349
001030616 041__ $$aEnglish
001030616 082__ $$a530
001030616 1001_ $$00009-0000-5672-7944$$aSchumann, M.$$b0$$eCorresponding author
001030616 245__ $$aEmergence of noise-induced barren plateaus in arbitrary layered noise models
001030616 260__ $$aPhiladelphia, PA$$bIOP Publishing$$c2024
001030616 3367_ $$2DRIVER$$aarticle
001030616 3367_ $$2DataCite$$aOutput Types/Journal article
001030616 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738825246_24855
001030616 3367_ $$2BibTeX$$aARTICLE
001030616 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001030616 3367_ $$00$$2EndNote$$aJournal Article
001030616 520__ $$aIn variational quantum algorithms the parameters of a parameterized quantum circuit are optimized in order to minimize a cost function that encodes the solution of the problem. The barren plateau phenomenon manifests as an exponentially vanishing dependence of the cost function with respect to the variational parameters, and thus hampers the optimization process. We discuss how, and in which sense, the phenomenon of noise-induced barren plateaus emerges in parameterized quantum circuits with a layered noise model. Previous results have shown the existence of noise-induced barren plateaus in the presence of local Pauli noise (Wang et al 2021 Nat. Commun.12 6961). We extend these results analytically to arbitrary completely-positive trace preserving maps in two cases: (1) when a parameter-shift rule holds, (2) when the parameterized quantum circuit at each layer forms a unitary 2-design. The second example shows how highly expressive unitaries give rise not only to standard barren plateaus (McClean et al 2018 Nat. Commun.9 4812), but also to noise-induced ones. In the second part of the paper, we study numerically the emergence of noise-induced barren plateaus in QAOA circuits focusing on the case of MaxCut problems on d-regular graphs and amplitude damping noise.
001030616 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001030616 536__ $$0G:(DE-Juel1)BMBF-13N16149$$aBMBF 13N16149 - QSolid (BMBF-13N16149)$$cBMBF-13N16149$$x1
001030616 536__ $$0G:(GEPRIS)390534769$$aDFG project G:(GEPRIS)390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x2
001030616 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001030616 7001_ $$0P:(DE-Juel1)184630$$aWilhelm-Mauch, Frank$$b1
001030616 7001_ $$0P:(DE-Juel1)187048$$aCiani, Alessandro$$b2
001030616 773__ $$0PERI:(DE-600)2906136-2$$a10.1088/2058-9565/ad6285$$gVol. 9, no. 4, p. 045019 -$$n4$$p045019 -$$tQuantum science and technology$$v9$$x2058-9565$$y2024
001030616 8564_ $$uhttps://juser.fz-juelich.de/record/1030616/files/Schumann_2024_Quantum_Sci._Technol._9_045019.pdf$$yOpenAccess
001030616 8564_ $$uhttps://juser.fz-juelich.de/record/1030616/files/Schumann_2024_Quantum_Sci._Technol._9_045019.gif?subformat=icon$$xicon$$yOpenAccess
001030616 8564_ $$uhttps://juser.fz-juelich.de/record/1030616/files/Schumann_2024_Quantum_Sci._Technol._9_045019.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001030616 8564_ $$uhttps://juser.fz-juelich.de/record/1030616/files/Schumann_2024_Quantum_Sci._Technol._9_045019.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001030616 8564_ $$uhttps://juser.fz-juelich.de/record/1030616/files/Schumann_2024_Quantum_Sci._Technol._9_045019.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001030616 8767_ $$d2025-01-22$$eHybrid-OA$$jPublish and Read
001030616 909CO $$ooai:juser.fz-juelich.de:1030616$$popenaire$$popen_access$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001030616 9101_ $$0I:(DE-588b)5008462-8$$60009-0000-5672-7944$$aForschungszentrum Jülich$$b0$$kFZJ
001030616 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184630$$aForschungszentrum Jülich$$b1$$kFZJ
001030616 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187048$$aForschungszentrum Jülich$$b2$$kFZJ
001030616 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001030616 9141_ $$y2024
001030616 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001030616 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001030616 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001030616 915pc $$0PC:(DE-HGF)0107$$2APC$$aTIB: IOP Publishing 2022
001030616 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001030616 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001030616 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001030616 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001030616 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-03
001030616 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-03
001030616 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-03
001030616 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-03
001030616 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-03
001030616 920__ $$lyes
001030616 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001030616 980__ $$ajournal
001030616 980__ $$aVDB
001030616 980__ $$aI:(DE-Juel1)PGI-12-20200716
001030616 980__ $$aAPC
001030616 980__ $$aUNRESTRICTED
001030616 9801_ $$aAPC
001030616 9801_ $$aFullTexts