001     1030616
005     20250206215502.0
024 7 _ |a 10.1088/2058-9565/ad6285
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05349
|2 datacite_doi
024 7 _ |a WOS:001282693900001
|2 WOS
037 _ _ |a FZJ-2024-05349
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Schumann, M.
|0 0009-0000-5672-7944
|b 0
|e Corresponding author
245 _ _ |a Emergence of noise-induced barren plateaus in arbitrary layered noise models
260 _ _ |a Philadelphia, PA
|c 2024
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738825246_24855
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In variational quantum algorithms the parameters of a parameterized quantum circuit are optimized in order to minimize a cost function that encodes the solution of the problem. The barren plateau phenomenon manifests as an exponentially vanishing dependence of the cost function with respect to the variational parameters, and thus hampers the optimization process. We discuss how, and in which sense, the phenomenon of noise-induced barren plateaus emerges in parameterized quantum circuits with a layered noise model. Previous results have shown the existence of noise-induced barren plateaus in the presence of local Pauli noise (Wang et al 2021 Nat. Commun.12 6961). We extend these results analytically to arbitrary completely-positive trace preserving maps in two cases: (1) when a parameter-shift rule holds, (2) when the parameterized quantum circuit at each layer forms a unitary 2-design. The second example shows how highly expressive unitaries give rise not only to standard barren plateaus (McClean et al 2018 Nat. Commun.9 4812), but also to noise-induced ones. In the second part of the paper, we study numerically the emergence of noise-induced barren plateaus in QAOA circuits focusing on the case of MaxCut problems on d-regular graphs and amplitude damping noise.
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF 13N16149 - QSolid (BMBF-13N16149)
|0 G:(DE-Juel1)BMBF-13N16149
|c BMBF-13N16149
|x 1
536 _ _ |a DFG project G:(GEPRIS)390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)
|0 G:(GEPRIS)390534769
|c 390534769
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wilhelm-Mauch, Frank
|0 P:(DE-Juel1)184630
|b 1
700 1 _ |a Ciani, Alessandro
|0 P:(DE-Juel1)187048
|b 2
773 _ _ |a 10.1088/2058-9565/ad6285
|g Vol. 9, no. 4, p. 045019 -
|0 PERI:(DE-600)2906136-2
|n 4
|p 045019 -
|t Quantum science and technology
|v 9
|y 2024
|x 2058-9565
856 4 _ |u https://juser.fz-juelich.de/record/1030616/files/Schumann_2024_Quantum_Sci._Technol._9_045019.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1030616/files/Schumann_2024_Quantum_Sci._Technol._9_045019.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1030616/files/Schumann_2024_Quantum_Sci._Technol._9_045019.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1030616/files/Schumann_2024_Quantum_Sci._Technol._9_045019.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1030616/files/Schumann_2024_Quantum_Sci._Technol._9_045019.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1030616
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 0009-0000-5672-7944
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)184630
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)187048
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a TIB: IOP Publishing 2022
|0 PC:(DE-HGF)0107
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-12-20200716
|k PGI-12
|l Quantum Computing Analytics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-12-20200716
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21