001030625 001__ 1030625
001030625 005__ 20241127131104.0
001030625 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05358
001030625 037__ $$aFZJ-2024-05358
001030625 041__ $$aEnglish
001030625 1001_ $$0P:(DE-Juel1)194564$$avan den Heuvel, Pim$$b0$$eCorresponding author$$ufzj
001030625 1112_ $$aAdiabatic Quantum Computing 2024$$cGlasgow$$d2024-06-10 - 2024-06-14$$gAQC$$wUK
001030625 245__ $$aSolving constrained combinatorial optimization problems on quantum devices with linear penalty terms
001030625 260__ $$c2024
001030625 3367_ $$033$$2EndNote$$aConference Paper
001030625 3367_ $$2BibTeX$$aINPROCEEDINGS
001030625 3367_ $$2DRIVER$$aconferenceObject
001030625 3367_ $$2ORCID$$aCONFERENCE_POSTER
001030625 3367_ $$2DataCite$$aOutput Types/Conference Poster
001030625 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1725534479_9769$$xAfter Call
001030625 520__ $$aQuantum computing approaches to solving constrained combinatorial optimization problems, such as Quantum Annealing (QA) and the Quantum Approximate Optimization Algorithm (QAOA), are often impeded by the fact that constraints are typically implemented as costly quadratic penalty terms in the cost function. It was recently found that linear penalty terms might suffice to solve a specific class of constrained optimizationproblems [1]. Here, conditions are outlined under which linear penalty terms can correctly encode two other constrained optimization problems, namely the Quadratic Knapsack Problem (QKP) and the Portfolio Optimization (PO) problem. For these two problems, our QAOA simulations suggest that problem Hamiltonians with a linear penaltyterm can yield a higher success probability than those with the usual quadratic penaltyterm. However, algorithm performance depends on the precise specification of the problems, e.g., the distribution of the covariances between assets in the PO problem. Additionally, for the fully connected PO problem it seems possible to neglect some of the connections between qubits by setting the corresponding problem coefficients to zero,while maintaining similar performance. Since the linear penalty terms can be implemented as single-qubit gates or biases, such problems require lower connectivity of thequantum hardware or can be run with shallower circuits, which should lead to improvedperformance on today’s noisy quantum processors.[1] Puya Mirkarimi, Ishaan Shukla, David C. Hoyle, Ross Williams, and Nicholas Chancellor. Quantum optimization with linear Ising penalty functions for customer data science. 2024. arXiv: 2404.05467[quant-ph].
001030625 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001030625 536__ $$0G:(DE-Juel1)BMBF-13N16149$$aBMBF 13N16149 - QSolid (BMBF-13N16149)$$cBMBF-13N16149$$x1
001030625 7001_ $$0P:(DE-Juel1)194305$$aMontanez-Barrera, Jhon Alejandro$$b1$$ufzj
001030625 7001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b2$$ufzj
001030625 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b3$$ufzj
001030625 8564_ $$uhttps://juser.fz-juelich.de/record/1030625/files/AQC_2024_poster.pdf$$yOpenAccess
001030625 8564_ $$uhttps://juser.fz-juelich.de/record/1030625/files/AQC_2024_poster.gif?subformat=icon$$xicon$$yOpenAccess
001030625 8564_ $$uhttps://juser.fz-juelich.de/record/1030625/files/AQC_2024_poster.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001030625 8564_ $$uhttps://juser.fz-juelich.de/record/1030625/files/AQC_2024_poster.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001030625 8564_ $$uhttps://juser.fz-juelich.de/record/1030625/files/AQC_2024_poster.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001030625 909CO $$ooai:juser.fz-juelich.de:1030625$$pdriver$$pVDB$$popen_access$$popenaire
001030625 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001030625 9141_ $$y2024
001030625 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194564$$aForschungszentrum Jülich$$b0$$kFZJ
001030625 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194305$$aForschungszentrum Jülich$$b1$$kFZJ
001030625 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b2$$kFZJ
001030625 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b3$$kFZJ
001030625 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001030625 920__ $$lyes
001030625 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001030625 980__ $$aposter
001030625 980__ $$aVDB
001030625 980__ $$aUNRESTRICTED
001030625 980__ $$aI:(DE-Juel1)JSC-20090406
001030625 9801_ $$aFullTexts