001     1030625
005     20241127131104.0
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2024-05358
037 _ _ |a FZJ-2024-05358
041 _ _ |a English
100 1 _ |0 P:(DE-Juel1)194564
|a van den Heuvel, Pim
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Adiabatic Quantum Computing 2024
|c Glasgow
|d 2024-06-10 - 2024-06-14
|g AQC
|w UK
245 _ _ |a Solving constrained combinatorial optimization problems on quantum devices with linear penalty terms
260 _ _ |c 2024
336 7 _ |0 33
|2 EndNote
|a Conference Paper
336 7 _ |2 BibTeX
|a INPROCEEDINGS
336 7 _ |2 DRIVER
|a conferenceObject
336 7 _ |2 ORCID
|a CONFERENCE_POSTER
336 7 _ |2 DataCite
|a Output Types/Conference Poster
336 7 _ |0 PUB:(DE-HGF)24
|2 PUB:(DE-HGF)
|a Poster
|b poster
|m poster
|s 1725534479_9769
|x After Call
520 _ _ |a Quantum computing approaches to solving constrained combinatorial optimization problems, such as Quantum Annealing (QA) and the Quantum Approximate Optimization Algorithm (QAOA), are often impeded by the fact that constraints are typically implemented as costly quadratic penalty terms in the cost function. It was recently found that linear penalty terms might suffice to solve a specific class of constrained optimizationproblems [1]. Here, conditions are outlined under which linear penalty terms can correctly encode two other constrained optimization problems, namely the Quadratic Knapsack Problem (QKP) and the Portfolio Optimization (PO) problem. For these two problems, our QAOA simulations suggest that problem Hamiltonians with a linear penaltyterm can yield a higher success probability than those with the usual quadratic penaltyterm. However, algorithm performance depends on the precise specification of the problems, e.g., the distribution of the covariances between assets in the PO problem. Additionally, for the fully connected PO problem it seems possible to neglect some of the connections between qubits by setting the corresponding problem coefficients to zero,while maintaining similar performance. Since the linear penalty terms can be implemented as single-qubit gates or biases, such problems require lower connectivity of thequantum hardware or can be run with shallower circuits, which should lead to improvedperformance on today’s noisy quantum processors.[1] Puya Mirkarimi, Ishaan Shukla, David C. Hoyle, Ross Williams, and Nicholas Chancellor. Quantum optimization with linear Ising penalty functions for customer data science. 2024. arXiv: 2404.05467[quant-ph].
536 _ _ |0 G:(DE-HGF)POF4-5111
|a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 0
536 _ _ |0 G:(DE-Juel1)BMBF-13N16149
|a BMBF 13N16149 - QSolid (BMBF-13N16149)
|c BMBF-13N16149
|x 1
700 1 _ |0 P:(DE-Juel1)194305
|a Montanez-Barrera, Jhon Alejandro
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)167542
|a Willsch, Dennis
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)138295
|a Michielsen, Kristel
|b 3
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/1030625/files/AQC_2024_poster.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1030625/files/AQC_2024_poster.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1030625/files/AQC_2024_poster.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1030625/files/AQC_2024_poster.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1030625/files/AQC_2024_poster.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1030625
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)194564
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)194305
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)167542
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)138295
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5111
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
914 1 _ |y 2024
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21