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Solving constrained combinatorial optimization problems on quantum 
devices with linear penalty terms

13N16149

Analysis of the difference between penalty methods

Combinatorial optimization problems are usually written in quadratic unconstrained binary
optimization (QUBO) form to run on quantum devices. (In)equality constraints are encoded into 
the cost function (𝐶) as quadratic penalties, for example, for some budget 𝐵:

Constrained quantum optimization

For some problems, a linear instead of a quadratic penalty can suffice to correctly encode the 
optimization problem1,2:

The linear penalty can only work for problems with a specific structure with respect to the 
Hamming weight (σ𝑖 𝑥𝑖) of possible solutions. Namely, the difference in the maximum energy 
needs to be a monotonically decreasing function of the Hamming weight (for maximization 
problems). In other words, its ‘derivative’ is monotonically decreasing and the spectra of these 
problems seem to have a ‘quadratic’ shape with respect to the Hamming weight. The linear 
penalty is then able to shift the maxima of such spectra to the desired Hamming weight. 

Advantages of linear penalties over quadratic ones:
• Fewer two-qubit terms in the cost function
• Smaller range of energy values, especially useful on devices with restrictions on this range 

(D-Wave devices)
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The entries of the 𝜎 covariance matrices in the Portfolio Optimization problems are random and 
some of them might be so small that they have negligible impact on the problems. Removing the 
smallest entries means that fewer two-qubit terms have to be implemented on the hardware 
with the linear penalty method. 

Neglecting some two-qubit terms

If 20 % of the smallest 𝜎 matrix entries 
are removed for the well-performing 
Portfolio Optimization problem, the 
success probability changes minimally. 
So at least in theory it seems fine to 
neglect some of the two-qubit terms. 
With current noisy devices, it seems 
likely that removing two-qubit terms 
provides an advantage in practice.

QAOA comparison of linear vs quadratic penalty

To test the two penalty methods, we ran QAOA simulations over a range of problem sizes (𝑛), 
always with ten layers and for ten randomly generated problems. Multipliers 𝜆 are selected 
from a range (of 20 values) that depends on the problem. The range is the same for the linear 
and quadratic penalty method. Only the result from the best multiplier is kept and plotted. 

• On average, the linear penalty method performs better than the quadratic one across all 
problems and problem sizes

• There are significant differences between problems, and the linear penalty might do better 
(or the quadratic worse) for problems with relatively large quadratic coefficients.

Quadratic Knapsack Problem (QKP)

Portfolio Optimization (PO)

This QKP formulation doesn’t have the 
correct spectrum shape for the linear 
penalty to work. Instead, the problem 
can be inverted by the transformation

and changed to a minimization 
problem. This is not the same problem 
anymore, but the valid ground state is 
still encoded correctly.

The initial parameters for the QAOA 
optimization procedure

Weighted Independent Set (WIS)

One-layer QAOA landscapes for the well-
performing Portfolio Optimization problem (𝑛 =
9) show that the linear penalty method has only 
one clear peak and trough, which could explain its 
good performance. However, it’s not certain that 
such qualitative observations extend to deeper 
circuits too. 

The linear penalty method reaches its highest 
success probability for the multiplier that 
encodes the solution in the ground state, as 
expected. For the quadratic penalty method, the
highest success probability is sometimes reached 
when the problem is incorrectly encoded, and the 
success probability is more unpredictable.

Quadratic penalty

Linear penalty Linear penalty

Quadratic penalty

One specific Portfolio Optimization problem yielded noteworthy success probabilities at relatively 
modest depth (10 QAOA layers). It has a dominant quadratic term because of a relatively large 𝑞
value and only positive covariances 𝜎. We analyzed the scaling behavior of this problem for larger 
problem sizes (more qubits) using the Jülich Universal Quantum Computer Simulator (JUQCS)3. 

QAOA for larger problem sizes

Although the success probability does 
drop off when the number of qubits is 
increased, the success probability for 
this problem can still exceed 10−1 even 
for > 30 qubits. For a QAOA circuit with 
only 10 layers, these are promising 
values. Since these calculations are more 
computationally expensive, no 
optimization is performed. 
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