001030636 001__ 1030636
001030636 005__ 20250129092457.0
001030636 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05369
001030636 037__ $$aFZJ-2024-05369
001030636 041__ $$aEnglish
001030636 1001_ $$0P:(DE-Juel1)196006$$aChava, Phanish$$b0$$eCorresponding author$$ufzj
001030636 1112_ $$a16th IEEE Workshop on Low Temperature electronics$$cCagliari$$d2024-06-03 - 2024-06-06$$gIEEE WOLTE16$$wItaly
001030636 245__ $$aEvaluation of cryogenic models for FDSOI CMOS transistors
001030636 260__ $$c2024
001030636 3367_ $$033$$2EndNote$$aConference Paper
001030636 3367_ $$2DataCite$$aOther
001030636 3367_ $$2BibTeX$$aINPROCEEDINGS
001030636 3367_ $$2DRIVER$$aconferenceObject
001030636 3367_ $$2ORCID$$aLECTURE_SPEECH
001030636 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1728459629_8335$$xOther
001030636 520__ $$aScalable quantum computers demand innovative solutions for tackling the wiring bottleneck to control an increasing number of qubits. Cryogenic electronics based on CMOS technologies are promising candidates which can operate down to deep-cryogenic temperatures and act as a communication and control interface to the quantum layer [1,2]. However, the performance of transistors used in these circuits is altered significantly when cooling from room temperature to cryogenic temperatures, which motivates accurate cryogenic modeling of transistors. We will report on cryogenic models tailored specifically for fully depleted silicon-on-insulator (FDSOI) transistors. We performed extensive DC characterization of transistors with subsequent modeling using the BSIM-IMG 102-9.6 model, which is the first version with a built-in cryogenic extension [3]. The preliminary models effectively represent the DC device behavior from 7 K up to room temperature. These models are used in industry standard EDA and simulation software, like Cadence Spectre. With the presented cryogenic models, we will show simulations at cryogenic temperatures. We will also compare the simulation results with the measured performance of a test chip in the temperature range from 7 K up to room temperature.
001030636 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001030636 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
001030636 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
001030636 7001_ $$0P:(DE-HGF)0$$aAlius, Heidrun$$b1
001030636 7001_ $$0P:(DE-Juel1)187429$$aBühler, Jonas$$b2
001030636 7001_ $$0P:(DE-Juel1)177765$$aCabrera Galicia, Alfonso Rafael$$b3
001030636 7001_ $$0P:(DE-Juel1)167475$$aDegenhardt, Carsten$$b4
001030636 7001_ $$0P:(DE-HGF)0$$aGneiting, Thomas$$b5
001030636 7001_ $$0P:(DE-Juel1)164820$$aHarff, Markus$$b6
001030636 7001_ $$0P:(DE-HGF)0$$aHeide, Thomas$$b7
001030636 7001_ $$0P:(DE-HGF)0$$aJavorka, Peter$$b8
001030636 7001_ $$0P:(DE-HGF)0$$aLederer, Maximilain$$b9
001030636 7001_ $$0P:(DE-HGF)0$$aLehmann, Steffen$$b10
001030636 7001_ $$0P:(DE-HGF)0$$aSimon, Maik$$b11
001030636 7001_ $$0P:(DE-HGF)0$$aSu, Meng$$b12
001030636 7001_ $$0P:(DE-Juel1)171680$$aVliex, Patrick$$b13
001030636 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b14
001030636 7001_ $$0P:(DE-HGF)0$$aWitt, Christian$$b15
001030636 7001_ $$0P:(DE-HGF)0$$aZetzsche, Dennis$$b16
001030636 8564_ $$uhttps://juser.fz-juelich.de/record/1030636/files/Abstract.pdf$$yOpenAccess
001030636 8564_ $$uhttps://juser.fz-juelich.de/record/1030636/files/WOLTE16_PhanishChava_V5.pptx$$yRestricted
001030636 8564_ $$uhttps://juser.fz-juelich.de/record/1030636/files/Abstract.gif?subformat=icon$$xicon$$yOpenAccess
001030636 8564_ $$uhttps://juser.fz-juelich.de/record/1030636/files/Abstract.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001030636 8564_ $$uhttps://juser.fz-juelich.de/record/1030636/files/Abstract.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001030636 8564_ $$uhttps://juser.fz-juelich.de/record/1030636/files/Abstract.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001030636 909CO $$ooai:juser.fz-juelich.de:1030636$$pdriver$$pVDB$$popen_access$$popenaire
001030636 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196006$$aForschungszentrum Jülich$$b0$$kFZJ
001030636 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187429$$aForschungszentrum Jülich$$b2$$kFZJ
001030636 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177765$$aForschungszentrum Jülich$$b3$$kFZJ
001030636 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167475$$aForschungszentrum Jülich$$b4$$kFZJ
001030636 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164820$$aForschungszentrum Jülich$$b6$$kFZJ
001030636 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b13$$kFZJ
001030636 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b14$$kFZJ
001030636 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001030636 9141_ $$y2024
001030636 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001030636 920__ $$lyes
001030636 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
001030636 9801_ $$aFullTexts
001030636 980__ $$aconf
001030636 980__ $$aVDB
001030636 980__ $$aUNRESTRICTED
001030636 980__ $$aI:(DE-Juel1)ZEA-2-20090406
001030636 981__ $$aI:(DE-Juel1)PGI-4-20110106