Hauptseite > Publikationsdatenbank > Evaluation of cryogenic models for FDSOI CMOS transistors > print |
001 | 1030636 | ||
005 | 20250129092457.0 | ||
024 | 7 | _ | |a 10.34734/FZJ-2024-05369 |2 datacite_doi |
037 | _ | _ | |a FZJ-2024-05369 |
041 | _ | _ | |a English |
100 | 1 | _ | |a Chava, Phanish |0 P:(DE-Juel1)196006 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a 16th IEEE Workshop on Low Temperature electronics |g IEEE WOLTE16 |c Cagliari |d 2024-06-03 - 2024-06-06 |w Italy |
245 | _ | _ | |a Evaluation of cryogenic models for FDSOI CMOS transistors |
260 | _ | _ | |c 2024 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1728459629_8335 |2 PUB:(DE-HGF) |x Other |
520 | _ | _ | |a Scalable quantum computers demand innovative solutions for tackling the wiring bottleneck to control an increasing number of qubits. Cryogenic electronics based on CMOS technologies are promising candidates which can operate down to deep-cryogenic temperatures and act as a communication and control interface to the quantum layer [1,2]. However, the performance of transistors used in these circuits is altered significantly when cooling from room temperature to cryogenic temperatures, which motivates accurate cryogenic modeling of transistors. We will report on cryogenic models tailored specifically for fully depleted silicon-on-insulator (FDSOI) transistors. We performed extensive DC characterization of transistors with subsequent modeling using the BSIM-IMG 102-9.6 model, which is the first version with a built-in cryogenic extension [3]. The preliminary models effectively represent the DC device behavior from 7 K up to room temperature. These models are used in industry standard EDA and simulation software, like Cadence Spectre. With the presented cryogenic models, we will show simulations at cryogenic temperatures. We will also compare the simulation results with the measured performance of a test chip in the temperature range from 7 K up to room temperature. |
536 | _ | _ | |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522) |0 G:(DE-HGF)POF4-5223 |c POF4-522 |f POF IV |x 0 |
650 | 2 | 7 | |a Instrument and Method Development |0 V:(DE-MLZ)SciArea-220 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Engineering, Industrial Materials and Processing |0 V:(DE-MLZ)GC-1601-2016 |2 V:(DE-HGF) |x 0 |
700 | 1 | _ | |a Alius, Heidrun |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Bühler, Jonas |0 P:(DE-Juel1)187429 |b 2 |
700 | 1 | _ | |a Cabrera Galicia, Alfonso Rafael |0 P:(DE-Juel1)177765 |b 3 |
700 | 1 | _ | |a Degenhardt, Carsten |0 P:(DE-Juel1)167475 |b 4 |
700 | 1 | _ | |a Gneiting, Thomas |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Harff, Markus |0 P:(DE-Juel1)164820 |b 6 |
700 | 1 | _ | |a Heide, Thomas |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Javorka, Peter |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Lederer, Maximilain |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Lehmann, Steffen |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Simon, Maik |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Su, Meng |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Vliex, Patrick |0 P:(DE-Juel1)171680 |b 13 |
700 | 1 | _ | |a van Waasen, Stefan |0 P:(DE-Juel1)142562 |b 14 |
700 | 1 | _ | |a Witt, Christian |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Zetzsche, Dennis |0 P:(DE-HGF)0 |b 16 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1030636/files/Abstract.pdf |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/1030636/files/WOLTE16_PhanishChava_V5.pptx |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1030636/files/Abstract.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1030636/files/Abstract.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1030636/files/Abstract.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1030636/files/Abstract.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1030636 |p openaire |p open_access |p VDB |p driver |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)196006 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)187429 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)177765 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)167475 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)164820 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)171680 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)142562 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5223 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ZEA-2-20090406 |k ZEA-2 |l Zentralinstitut für Elektronik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ZEA-2-20090406 |
981 | _ | _ | |a I:(DE-Juel1)PGI-4-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|