001     1030636
005     20250129092457.0
024 7 _ |a 10.34734/FZJ-2024-05369
|2 datacite_doi
037 _ _ |a FZJ-2024-05369
041 _ _ |a English
100 1 _ |a Chava, Phanish
|0 P:(DE-Juel1)196006
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 16th IEEE Workshop on Low Temperature electronics
|g IEEE WOLTE16
|c Cagliari
|d 2024-06-03 - 2024-06-06
|w Italy
245 _ _ |a Evaluation of cryogenic models for FDSOI CMOS transistors
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1728459629_8335
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Scalable quantum computers demand innovative solutions for tackling the wiring bottleneck to control an increasing number of qubits. Cryogenic electronics based on CMOS technologies are promising candidates which can operate down to deep-cryogenic temperatures and act as a communication and control interface to the quantum layer [1,2]. However, the performance of transistors used in these circuits is altered significantly when cooling from room temperature to cryogenic temperatures, which motivates accurate cryogenic modeling of transistors. We will report on cryogenic models tailored specifically for fully depleted silicon-on-insulator (FDSOI) transistors. We performed extensive DC characterization of transistors with subsequent modeling using the BSIM-IMG 102-9.6 model, which is the first version with a built-in cryogenic extension [3]. The preliminary models effectively represent the DC device behavior from 7 K up to room temperature. These models are used in industry standard EDA and simulation software, like Cadence Spectre. With the presented cryogenic models, we will show simulations at cryogenic temperatures. We will also compare the simulation results with the measured performance of a test chip in the temperature range from 7 K up to room temperature.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
650 2 7 |a Instrument and Method Development
|0 V:(DE-MLZ)SciArea-220
|2 V:(DE-HGF)
|x 0
650 1 7 |a Engineering, Industrial Materials and Processing
|0 V:(DE-MLZ)GC-1601-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Alius, Heidrun
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bühler, Jonas
|0 P:(DE-Juel1)187429
|b 2
700 1 _ |a Cabrera Galicia, Alfonso Rafael
|0 P:(DE-Juel1)177765
|b 3
700 1 _ |a Degenhardt, Carsten
|0 P:(DE-Juel1)167475
|b 4
700 1 _ |a Gneiting, Thomas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Harff, Markus
|0 P:(DE-Juel1)164820
|b 6
700 1 _ |a Heide, Thomas
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Javorka, Peter
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Lederer, Maximilain
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Lehmann, Steffen
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Simon, Maik
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Su, Meng
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Vliex, Patrick
|0 P:(DE-Juel1)171680
|b 13
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 14
700 1 _ |a Witt, Christian
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Zetzsche, Dennis
|0 P:(DE-HGF)0
|b 16
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1030636/files/Abstract.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/1030636/files/WOLTE16_PhanishChava_V5.pptx
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1030636/files/Abstract.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1030636/files/Abstract.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1030636/files/Abstract.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1030636/files/Abstract.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1030636
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)196006
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)187429
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177765
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)167475
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)164820
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)171680
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21