001     1030638
005     20250701125850.0
024 7 _ |a 10.34734/FZJ-2024-05371
|2 datacite_doi
037 _ _ |a FZJ-2024-05371
041 _ _ |a English
100 1 _ |a Gemba, Gregor
|0 P:(DE-Juel1)203522
|b 0
|u fzj
111 2 _ |a 17th Pico- and Nano-Satellite Workshop
|g PiNa
|c Berlin
|d 2024-09-02 - 2024-09-02
|w Germany
245 _ _ |a INSPIRE Sat-3 AtmoLITE - measuring gravity waves from aMicrosat
260 _ _ |c 2024
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1734081456_7860
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Atmospheric dynamics are composed largely of atmospheric circulations of different scales. Onesuch circulation is the mesospheric pole-to-pole circulation, which gives rise to the intriguing phe-nomenon whereby the polar summer mesosphere, despite receiving 24 hours of sunlight, is thecoldest region in the atmosphere. These circulations are governed by atmospheric waves, whichagain come in various shapes and sizes. The pole-to-pole circulation of the upper mesosphere inparticular is driven by so-called gravity waves. Gravity waves are buoyancy waves where gravityserves as the restoring force. These waves carry energy and momentum from the lower atmosphereinto the mesosphere and lower thermosphere. As gravity waves travel vertically with wavelengths onthe scale of kilometers, they can be well measured by a satellite with a limb looking configuration.In recognition of the significance of accurately measuring these atmospheric dynamics, researchershave developed advanced instrumentation to capture the intricate details of these phenomena. Thisbrings us to a significant joint initiative aimed at enhancing our understanding of the upper meso-sphere. A collaborative effort between the J ̈ulich Research Center and the University of Wuppertalin Germany led to the development of such a limb sounding instrument. The instrument’s primaryobjective is to provide vertical temperature profiles with a fine vertical sampling of 1.5 km. Theseprecise measurements enable the effective capture and analysis of small to medium-scale gravitywaves in heights of about 90-140km, which is crucial for understanding the energy and momentumtransfer in the atmosphere. The measurement principle is based on spectral information whichis captured by an imaging Spatial Heterodyne Interferometer. This is essentially a Michelson in-terferometer with the two mirrors exchanged with blazed gratings in Littrow configuration. Thespectrum is extracted from the interferogram which is superimposing the image on the detector.To specifically observe the oxygen A-band emissions, a bandpass filter of 6 nm centered around763 nm is used. The Oxygen A-band was chosen as it peaks around 90 km and from its relativespectral band shape, the temperature can be directly derived. The instrument is scheduled to belaunched on the International Satellite Program in Research and Education (INSPIRE) Sat-3 mis-sion, led by the Indian Institute of Space Science and Technology. The objective of the mission istwofold: to acquire expertise for all participating scientists and to validate the onboard instrumentsin orbit. Furthermore, the mission aims to integrate into the INSPIRE constellation, providing aconstellation of Earth and space weather-monitoring satellites. The expected outcomes include en-hanced models of atmospheric dynamics and will facilitate more accurate space weather and climatepredictions.
536 _ _ |a 2A3 - Remote Sensing (CARF - CCA) (POF4-2A3)
|0 G:(DE-HGF)POF4-2A3
|c POF4-2A3
|f POF IV
|x 0
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 1
650 2 7 |a Geosciences
|0 V:(DE-MLZ)SciArea-140
|2 V:(DE-HGF)
|x 0
650 1 7 |a Instrument and Method Development
|0 V:(DE-MLZ)GC-2002-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Kaufmann, Martin
|0 P:(DE-Juel1)129128
|b 1
|u fzj
700 1 _ |a Ungermann, Jörn
|0 P:(DE-Juel1)129105
|b 2
|u fzj
700 1 _ |a Miebach, Marco
|0 P:(DE-Juel1)187057
|b 3
|u fzj
700 1 _ |a Gauss, Martin
|0 P:(DE-Juel1)184504
|b 4
|u fzj
700 1 _ |a Augspurger, Tobias
|0 P:(DE-Juel1)187056
|b 5
700 1 _ |a Neubert, Tom
|0 P:(DE-Juel1)133921
|b 6
|u fzj
700 1 _ |a Fröhlich, Denis
|0 P:(DE-Juel1)169462
|b 7
|u fzj
700 1 _ |a Preusse, Peter
|0 P:(DE-Juel1)129143
|b 8
|u fzj
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 9
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/1030638/files/PiNa_IS3_AtmoLite.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1030638/files/PiNa_IS3_AtmoLite.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1030638/files/PiNa_IS3_AtmoLite.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1030638/files/PiNa_IS3_AtmoLite.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1030638/files/PiNa_IS3_AtmoLite.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1030638
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)203522
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129128
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129105
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)187057
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)184504
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)133921
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)169462
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129143
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129145
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l COOPERATION ACROSS RESEARCH FIELDS (CARFs)
|1 G:(DE-HGF)POF4-2A0
|0 G:(DE-HGF)POF4-2A3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Remote Sensing (CARF - CCA)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 1
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICE-4-20101013
|k ICE-4
|l Stratosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-1-20090406
|k ZEA-1
|l Zentralinstitut für Technologie
|x 1
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 2
980 1 _ |a FullTexts
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICE-4-20101013
980 _ _ |a I:(DE-Juel1)ZEA-1-20090406
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ITE-20250108
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21