001030713 001__ 1030713
001030713 005__ 20250310131245.0
001030713 0247_ $$2doi$$a10.1093/mam/ozae093
001030713 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05420
001030713 0247_ $$2pmid$$a39405188
001030713 0247_ $$2WOS$$aWOS:001332600800001
001030713 037__ $$aFZJ-2024-05420
001030713 082__ $$a500
001030713 1001_ $$0P:(DE-Juel1)196697$$aKazimi, Bashir$$b0$$eCorresponding author
001030713 245__ $$aEnhancing Semantic Segmentation in High-Resolution TEM Images: A Comparative Study of Batch Normalization and Instance Normalization
001030713 260__ $$aOxford$$bOxford University Press$$c2025
001030713 3367_ $$2DRIVER$$aarticle
001030713 3367_ $$2DataCite$$aOutput Types/Journal article
001030713 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1740131644_12349
001030713 3367_ $$2BibTeX$$aARTICLE
001030713 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001030713 3367_ $$00$$2EndNote$$aJournal Article
001030713 520__ $$aIntegrating deep learning into image analysis for transmission electron microscopy (TEM) holds significant promise for advancing materials science and nanotechnology. Deep learning is able to enhance image quality, to automate feature detection, and to accelerate data analysis, addressing the complex nature of TEM datasets. This capability is crucial for precise and efficient characterization of details on the nano—and microscale, e.g., facilitating more accurate and high-throughput analysis of nanoparticle structures. This study investigates the influence of batch normalization (BN) and instance normalization (IN) on the performance of deep learning models for semantic segmentation of high-resolution TEM images. Using U-Net and ResNet architectures, we trained models on two different datasets. Our results demonstrate that IN consistently outperforms BN, yielding higher Dice scores and Intersection over Union metrics. These findings underscore the necessity of selecting appropriate normalization methods to maximize the performance of deep learning models applied to TEM images.
001030713 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001030713 588__ $$aDataset connected to DataCite
001030713 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b1$$ufzj
001030713 773__ $$0PERI:(DE-600)1481716-0$$a10.1093/mam/ozae093$$n1$$pozae093$$tMicroscopy and microanalysis$$v31$$x1079-8501$$y2025
001030713 8564_ $$uhttps://juser.fz-juelich.de/record/1030713/files/Invoice_SOA24LT010273.pdf
001030713 8564_ $$uhttps://juser.fz-juelich.de/record/1030713/files/Invoice_SOA24LT010273.gif?subformat=icon$$xicon
001030713 8564_ $$uhttps://juser.fz-juelich.de/record/1030713/files/Invoice_SOA24LT010273.jpg?subformat=icon-1440$$xicon-1440
001030713 8564_ $$uhttps://juser.fz-juelich.de/record/1030713/files/Invoice_SOA24LT010273.jpg?subformat=icon-180$$xicon-180
001030713 8564_ $$uhttps://juser.fz-juelich.de/record/1030713/files/Invoice_SOA24LT010273.jpg?subformat=icon-640$$xicon-640
001030713 8564_ $$uhttps://juser.fz-juelich.de/record/1030713/files/ozae093.pdf$$yOpenAccess
001030713 8767_ $$8SOA24LT010273$$92024-09-05$$a1200206868$$d2024-10-10$$eHybrid-OA$$jZahlung erfolgt
001030713 909CO $$ooai:juser.fz-juelich.de:1030713$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001030713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196697$$aForschungszentrum Jülich$$b0$$kFZJ
001030713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b1$$kFZJ
001030713 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001030713 9141_ $$y2025
001030713 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001030713 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-22
001030713 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-22
001030713 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-22
001030713 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-22
001030713 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROSC MICROANAL : 2022$$d2023-08-22
001030713 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001030713 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-22
001030713 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-22
001030713 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-22
001030713 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-22
001030713 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001030713 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-22
001030713 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-22
001030713 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-22$$wger
001030713 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-22
001030713 920__ $$lyes
001030713 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
001030713 980__ $$ajournal
001030713 980__ $$aVDB
001030713 980__ $$aUNRESTRICTED
001030713 980__ $$aI:(DE-Juel1)IAS-9-20201008
001030713 980__ $$aAPC
001030713 9801_ $$aAPC
001030713 9801_ $$aFullTexts