001     1030713
005     20250310131245.0
024 7 _ |a 10.1093/mam/ozae093
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05420
|2 datacite_doi
024 7 _ |a 39405188
|2 pmid
024 7 _ |a WOS:001332600800001
|2 WOS
037 _ _ |a FZJ-2024-05420
082 _ _ |a 500
100 1 _ |a Kazimi, Bashir
|0 P:(DE-Juel1)196697
|b 0
|e Corresponding author
245 _ _ |a Enhancing Semantic Segmentation in High-Resolution TEM Images: A Comparative Study of Batch Normalization and Instance Normalization
260 _ _ |a Oxford
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1740131644_12349
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Integrating deep learning into image analysis for transmission electron microscopy (TEM) holds significant promise for advancing materials science and nanotechnology. Deep learning is able to enhance image quality, to automate feature detection, and to accelerate data analysis, addressing the complex nature of TEM datasets. This capability is crucial for precise and efficient characterization of details on the nano—and microscale, e.g., facilitating more accurate and high-throughput analysis of nanoparticle structures. This study investigates the influence of batch normalization (BN) and instance normalization (IN) on the performance of deep learning models for semantic segmentation of high-resolution TEM images. Using U-Net and ResNet architectures, we trained models on two different datasets. Our results demonstrate that IN consistently outperforms BN, yielding higher Dice scores and Intersection over Union metrics. These findings underscore the necessity of selecting appropriate normalization methods to maximize the performance of deep learning models applied to TEM images.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 1
|u fzj
773 _ _ |a 10.1093/mam/ozae093
|0 PERI:(DE-600)1481716-0
|n 1
|p ozae093
|t Microscopy and microanalysis
|v 31
|y 2025
|x 1079-8501
856 4 _ |u https://juser.fz-juelich.de/record/1030713/files/Invoice_SOA24LT010273.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/1030713/files/Invoice_SOA24LT010273.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/1030713/files/Invoice_SOA24LT010273.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/1030713/files/Invoice_SOA24LT010273.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/1030713/files/Invoice_SOA24LT010273.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1030713/files/ozae093.pdf
909 C O |o oai:juser.fz-juelich.de:1030713
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)196697
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROSC MICROANAL : 2022
|d 2023-08-22
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21