001030715 001__ 1030715
001030715 005__ 20250203133203.0
001030715 0247_ $$2doi$$a10.1109/TQE.2024.3445967
001030715 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05422
001030715 0247_ $$2WOS$$aWOS:001363384200001
001030715 037__ $$aFZJ-2024-05422
001030715 041__ $$aEnglish
001030715 082__ $$a621.3
001030715 1001_ $$0P:(DE-Juel1)170099$$aHader, Fabian$$b0$$eCorresponding author
001030715 245__ $$aSimulation of Charge Stability Diagrams for Automated Tuning Solutions (SimCATS)
001030715 260__ $$aNew York, NY$$bIEEE$$c2024
001030715 3367_ $$2DRIVER$$aarticle
001030715 3367_ $$2DataCite$$aOutput Types/Journal article
001030715 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1726634244_16952
001030715 3367_ $$2BibTeX$$aARTICLE
001030715 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001030715 3367_ $$00$$2EndNote$$aJournal Article
001030715 520__ $$aQuantum dots (QDs) must be tuned precisely to provide a suitable basis for quantum computation. A scalable platform for quantum computing can only be achieved by fully automating the tuning process. One crucial step is to trap the appropriate number of electrons in the QDs, typically accomplished by analyzing charge stability diagrams (CSDs). Training and testing automation algorithms require large amounts of data, which can be either measured and manually labeled in an experiment or simulated. This article introduces a new approach to the realistic simulation of such measurements. Our flexible framework enables the simulation of ideal CSD data complemented with appropriate sensor responses and distortions. We suggest using this simulation to benchmark published algorithms. Also, we encourage the extension by custom models and parameter sets to drive the development of robust technology-independent algorithms.
001030715 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001030715 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001030715 7001_ $$0P:(DE-Juel1)173094$$aFleitmann, Sarah$$b1$$ufzj
001030715 7001_ $$0P:(DE-Juel1)133952$$aVogelbruch, Jan$$b2$$ufzj
001030715 7001_ $$0P:(DE-Juel1)169123$$aGeck, Lotte$$b3$$ufzj
001030715 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b4$$ufzj
001030715 773__ $$0PERI:(DE-600)3035782-2$$a10.1109/TQE.2024.3445967$$gp. 1 - 16$$p 5500414 $$tIEEE transactions on quantum engineering$$v5$$x2689-1808$$y2024
001030715 8564_ $$uhttps://juser.fz-juelich.de/record/1030715/files/Simulation_of_Charge_Stability_Diagrams_for_Automated_Tuning_Solutions_SimCATS.pdf$$yOpenAccess
001030715 8564_ $$uhttps://juser.fz-juelich.de/record/1030715/files/Simulation_of_Charge_Stability_Diagrams_for_Automated_Tuning_Solutions_SimCATS.gif?subformat=icon$$xicon$$yOpenAccess
001030715 8564_ $$uhttps://juser.fz-juelich.de/record/1030715/files/Simulation_of_Charge_Stability_Diagrams_for_Automated_Tuning_Solutions_SimCATS.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001030715 8564_ $$uhttps://juser.fz-juelich.de/record/1030715/files/Simulation_of_Charge_Stability_Diagrams_for_Automated_Tuning_Solutions_SimCATS.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001030715 8564_ $$uhttps://juser.fz-juelich.de/record/1030715/files/Simulation_of_Charge_Stability_Diagrams_for_Automated_Tuning_Solutions_SimCATS.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001030715 8767_ $$d2024-09-13$$eAPC$$jZahlung erfolgt$$zIEEE
001030715 909CO $$ooai:juser.fz-juelich.de:1030715$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001030715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170099$$aForschungszentrum Jülich$$b0$$kFZJ
001030715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173094$$aForschungszentrum Jülich$$b1$$kFZJ
001030715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133952$$aForschungszentrum Jülich$$b2$$kFZJ
001030715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169123$$aForschungszentrum Jülich$$b3$$kFZJ
001030715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b4$$kFZJ
001030715 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001030715 9141_ $$y2024
001030715 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001030715 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001030715 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001030715 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001030715 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001030715 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001030715 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-09-03
001030715 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-09-03
001030715 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
001030715 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
001030715 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:39:05Z
001030715 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:39:05Z
001030715 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:39:05Z
001030715 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
001030715 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-12
001030715 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
001030715 920__ $$lyes
001030715 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
001030715 9801_ $$aAPC
001030715 9801_ $$aFullTexts
001030715 980__ $$ajournal
001030715 980__ $$aVDB
001030715 980__ $$aUNRESTRICTED
001030715 980__ $$aI:(DE-Juel1)ZEA-2-20090406
001030715 980__ $$aAPC
001030715 981__ $$aI:(DE-Juel1)PGI-4-20110106