001     1030735
005     20250314084122.0
024 7 _ |a 10.1016/j.future.2024.07.050
|2 doi
024 7 _ |a 0167-739X
|2 ISSN
024 7 _ |a 1872-7115
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05442
|2 datacite_doi
024 7 _ |a WOS:001294686400001
|2 WOS
037 _ _ |a FZJ-2024-05442
082 _ _ |a 004
100 1 _ |a Wylie, Brian J. N.
|0 P:(DE-Juel1)132302
|b 0
|e Corresponding author
245 _ _ |a 15+ years of joint parallel application performance analysis/tools training with Scalasca/Score-P and Paraver/Extrae toolsets
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1728908587_30828
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Keywords: Hybrid parallel programming; MPI message-passing; OpenMP multithreading; OpenACC device offload acceleration; HPC application execution performance measurement & analysis; Performance assessment & optimisation methodology & tools; Hands-on training & coaching
520 _ _ |a The diverse landscape of distributed heterogeneous computer systems currently available and being created to address computational challenges with the highest performance requirements presents daunting complexity for application developers. They must effectively decompose and distribute their application functionality and data, efficiently orchestrating the associated communication and synchronisation, on multi/manycore CPU processors with multiple attached acceleration devices structured within compute nodes with interconnection networks of various topologies.Sophisticated compilers, runtime systems and libraries are (loosely) matched with debugging, performance measurement and analysis tools, with proprietary versions by integrators/vendors provided exclusively for their systems complemented by portable (primarily) open-source equivalents developed and supported by the international research community over many years. The Scalasca and Paraver toolsets are two widely employed examples of the latter, installed on personal notebook computers through to the largest leadership HPC systems. Over more than fifteen years their developers have worked closely together in numerous collaborative projects culminating in the creation of a universal parallel performance assessment and optimisation methodology focused on application execution efficiency and scalability, and the associated training and coaching of application developers (often in teams) in its productive use, reviewed in this article with lessons learnt therefrom.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a JLESC - Joint Laboratory for Extreme Scale Computing (JLESC-20150708)
|0 G:(DE-Juel1)JLESC-20150708
|c JLESC-20150708
|f JLESC
|x 1
536 _ _ |a POP - Performance Optimisation and Productivity (676553)
|0 G:(EU-Grant)676553
|c 676553
|f H2020-EINFRA-2015-1
|x 2
536 _ _ |a POP2 - Performance Optimisation and Productivity 2 (824080)
|0 G:(EU-Grant)824080
|c 824080
|f H2020-INFRAEDI-2018-1
|x 3
536 _ _ |a POP3 - Performance Optimisation and Productivity 3 (101143931)
|0 G:(EU-Grant)101143931
|c 101143931
|f HORIZON_HORIZON-EUROHPC-JU-2023-COE-01-01
|x 4
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 5
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Giménez, Judit
|0 P:(DE-HGF)0
|b 1
|e Collaboration author
700 1 _ |a Feld, Christian
|0 P:(DE-Juel1)132244
|b 2
700 1 _ |a Geimer, Markus
|0 P:(DE-Juel1)132112
|b 3
700 1 _ |a Llort, Germán
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mendez, Sandra
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mercadal, Estanislao
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Visser, Anke
|0 P:(DE-Juel1)132282
|b 7
700 1 _ |a García-Gasulla, Marta
|0 P:(DE-HGF)0
|b 8
770 _ _ |a Highlights from the Joint Laboratory on Extreme Scale Computing
773 _ _ |a 10.1016/j.future.2024.07.050
|g Vol. 162, p. 107472 -
|0 PERI:(DE-600)2020551-X
|p 107472
|t Future generation computer systems
|v 162
|y 2025
|x 0167-739X
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/1030735/files/Final%20proof.pdf
856 4 _ |y OpenAccess
|x icon
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/1030735/files/Final%20proof.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/1030735/files/Final%20proof.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/1030735/files/Final%20proof.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/1030735/files/Final%20proof.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1030735
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132302
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132112
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)132282
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Elsevier 09/01/2023
|0 PC:(DE-HGF)0125
|2 APC
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUTURE GENER COMP SY : 2022
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FUTURE GENER COMP SY : 2022
|d 2024-12-17
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21