001030737 001__ 1030737
001030737 005__ 20250314091134.0
001030737 0247_ $$2doi$$a10.1016/j.ijbiomac.2024.134219
001030737 0247_ $$2ISSN$$a0141-8130
001030737 0247_ $$2ISSN$$a1879-0003
001030737 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05444
001030737 0247_ $$2pmid$$a39097041
001030737 0247_ $$2WOS$$aWOS:001295816700001
001030737 037__ $$aFZJ-2024-05444
001030737 082__ $$a570
001030737 1001_ $$0P:(DE-Juel1)181061$$aAlbani, Simone$$b0
001030737 245__ $$aDepletion of membrane cholesterol modifies structure, dynamic and activation of Nav1.7
001030737 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2024
001030737 3367_ $$2DRIVER$$aarticle
001030737 3367_ $$2DataCite$$aOutput Types/Journal article
001030737 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738065132_6609
001030737 3367_ $$2BibTeX$$aARTICLE
001030737 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001030737 3367_ $$00$$2EndNote$$aJournal Article
001030737 520__ $$aCholesterol is a major component of plasma membranes and plays a significant role in actively regulating the functioning of several membrane proteins in humans. In this study, we focus on the role of cholesterol depletion on the voltage-gated sodium channel Nav1.7, which is primarily expressed in the peripheral sensory neurons and linked to various chronic inherited pain syndromes. Coarse-grained molecular dynamics simulations revealed key dynamic changes of Nav1.7 upon membrane cholesterol depletion: A loss of rigidity in the structural motifs linked to activation and fast-inactivation is observed, suggesting an easier transition of the channel between different gating states. In-vitro whole-cell patch clamp experiments on HEK293t cells expressing Nav1.7 validated these predictions at the functional level: Hyperpolarizing shifts in the voltage-dependence of activation and fast-inactivation were observed along with an acceleration of the time to peak and onset kinetics of fast inactivation. These results underline the critical role of membrane composition, and of cholesterol in particular, in influencing Nav1.7 gating characteristics. Furthermore, our results also point to cholesterol-driven changes of the geometry of drug-binding regions, hinting to a key role of the membrane environment in the regulation of drug effects.
001030737 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
001030737 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001030737 7001_ $$0P:(DE-HGF)0$$aEswaran, Vishal Sudha Bhagavath$$b1
001030737 7001_ $$0P:(DE-Juel1)190274$$aPiergentili, Alessia$$b2
001030737 7001_ $$0P:(DE-HGF)0$$ade Souza, Paulo Cesar Telles$$b3
001030737 7001_ $$0P:(DE-HGF)0$$aLampert, Angelika$$b4$$eCorresponding author
001030737 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b5$$eCorresponding author
001030737 773__ $$0PERI:(DE-600)1483284-7$$a10.1016/j.ijbiomac.2024.134219$$gVol. 278, p. 134219 -$$p134219 -$$tInternational journal of biological macromolecules$$v278$$x0141-8130$$y2024
001030737 8564_ $$uhttps://juser.fz-juelich.de/record/1030737/files/1-s2.0-S0141813024050244-main.pdf$$yOpenAccess
001030737 8767_ $$d2024-09-09$$eHybrid-OA$$jDEAL
001030737 909CO $$ooai:juser.fz-juelich.de:1030737$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001030737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181061$$aForschungszentrum Jülich$$b0$$kFZJ
001030737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190274$$aForschungszentrum Jülich$$b2$$kFZJ
001030737 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich$$b5$$kFZJ
001030737 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
001030737 9141_ $$y2024
001030737 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001030737 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
001030737 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001030737 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001030737 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001030737 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-21$$wger
001030737 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
001030737 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
001030737 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
001030737 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-21
001030737 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-21
001030737 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
001030737 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-21
001030737 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-21
001030737 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001030737 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001030737 920__ $$lyes
001030737 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x0
001030737 980__ $$ajournal
001030737 980__ $$aVDB
001030737 980__ $$aUNRESTRICTED
001030737 980__ $$aI:(DE-Juel1)INM-9-20140121
001030737 980__ $$aAPC
001030737 9801_ $$aAPC
001030737 9801_ $$aFullTexts