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A B S T R A C T

A particle size-based Smoluchowski coagulation and fragmentation equation was solved in the free and
open source process modeling package CADET. The WFV and MCNP schemes were selected to discretize
the internal particle size coordinate. Weights in these schemes were modified to preserve and conserve
the zeroth and third moments for size-based equations. Modified propositions and proofs for the scheme
are provided. Analytical Jacobians were derived and implemented to reduce the solver’s runtime. A two-
dimensional Smoluchowski coagulation and fragmentation equation with axial position as external coordinate
was formulated and discretized to support simulations of continuous particulate processes in dispersive plug
flow reactors. Five 1D and four 2D test cases were used to validate the implementation and benchmark the
solver’s performance. The runtime, L1 error norm, L1 error rate, particle size distribution moments up to sixth
order and several scalar metrics were analyzed in detail.
1. Introduction

The population balance model (PBM) is in wide use for the modeling
of particulate processes including crystallization, precipitation, aerosol
formation, granulation, polymerization, agglomeration and fragmenta-
tion. The PBM takes into account important crystallization/precipitation
mechanisms including nucleation, growth, growth rate dispersion, ag-
gregation and fragmentation processes. In part I we solved the PBM
considering nucleation, growth, and growth rate dispersion mecha-
nisms in stirred tank reactors (STRs) and in dispersive plug flow
reactors (DPFRs) (Zhang et al., 2024). The model and algorithm were
implemented and executed in the free and open-source process mod-
eling software package CADET. In part II, we extend the model and
code by incorporating a size-based Smoluchowski coagulation and frag-
mentation equation to account for particle aggregation and breakage
mechanisms.

The discrete Smoluchowski coagulation equation was originally
proposed by Smoluchowski (1916) to describe the coagulation of col-
loids that are subject to Brownian motions using a statistical physics
approach. Later, (Müller, 1928) provided a continuous formulation.
The coagulation equation tracks the evolution of the particle number
distribution due to binary aggregation (coalescence, coagulation, ag-
glomeration) processes in which two smaller particles merge into a
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E-mail address: e.von.lieres@fz-juelich.de (E. von Lieres).

larger particle. It presumes that the total volume or mass in the system
is conserved while the particle count is reduced during aggregation. The
fragmentation equation shares the same mathematical origin with the
Smoluchowski coagulation equation but describes the opposed process:
it tracks the evolution of the particle distribution when larger particles
break into smaller particles. It also presumes that the total volume
or mass is conserved, but the particle count increases. Both equations
were originally formulated for one-dimensional (1D) processes in well-
mixed batch or continuous STRs. They are not directly applicable to the
continuous two-dimensional (2D) processes that occur in DPFRs.

Mathematically, the governing equations of the Smoluchowski co-
agulation and fragmentation model are integro-differential equations.
Analytical solutions, when available, are rarely of practical use, as
they require special initial conditions. Various authors have developed
different numerical methods to solve the governing equations. Well-
known solution methods include, but are not limited to, (1) sectional
methods such as the fixed pivot method (Kumar and Ramkrishna, 1996)
and the cell average technique (Kumar et al., 2006), (2) discretiza-
tion methods such as the finite volume method (Forestier-Coste and
Mancini, 2012; Filbet and Laurençot, 2004; Qamar and Warnecke,
2007; Singh, 2021; Saha et al., 2016; Kumar and Kumar, 2013), finite
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element method (Mahoney and Ramkrishna, 2002) and the discon-
tinuous Galerkin method (Hailiang et al., 2019), and (3) statistical
methods such as Monte Carlo simulations (Eibeck and Wagner, 2000,
2001) and methods of moments including direct quadrature methods of
moments (Marchisio and Fox, 2005) and extended quadrature methods
of moments (Yuan et al., 2012). Among these methods, the finite
volume method (FVM) fully recovers the particle size distribution while
providing a relatively simple mathematical formulation.

In addition to the full distribution itself, higher order moments of
the distribution are of particular interest in many applications since
they represent physical quantities, some of which can be directly
measured using experiments. Moments also provide distribution-related
scalar metrics such as the mean size, total particle count and variance
of the particle size distribution. Moment analysis is frequently used
to evaluate the efficacy of numerical algorithms because higher order
moments are very sensitive to errors in the solution of the governing
equations.

Direct application of the FVM for solving the Smoluchowski co-
agulation and fragmentation equations is difficult, but highly spe-
cialized algorithms have been developed. Based on the FVM, (Filbet
and Laurençot, 2004) have proposed a numerical scheme for the 1D
coagulation equation, which was later extended to higher dimensions
by Qamar and Warnecke (2007). Forestier-Coste and Mancini (2012)
and Filbet and Laurençot (2004) used cell overlapping to formulate
the finite volume preserving scheme that preserves the first order
moment or the total volume on nonuniform grids. This approach was
later applied to a mass-based Smoluchowski coagulation equation and
higher-dimensional cases by Singh (2021). Kaur et al. (2017) for-
mulated a weighted finite volume (WFV) method that preserves the
zeroth and first order moments by introducing two weights in the FVM
discretized source and sink terms. The scheme was shown to provide
shorter runtimes as compared to the FVP scheme for multivariate
aggregation problems. To solve the fragmentation equation using the
FVM, Bourgade and Filbet (2007) proposed a numerical scheme for
binary particle fragmentation with the total volume conserved. To
track multiple fragments, Kumar and Kumar (2013) presented another
scheme to solve a general fragmentation equation that also conserves
the total volume and has second order convergence, independent of
the grid type. Later, both schemes were improved by Saha and Bück
(2021) resulting in much smaller numerical errors for the total particle
count. Saha et al. (2016) introduced the mass conserving and number
preserving (MCNP) scheme on nonuniform grids using two weights in
the discretized source and sink terms. This scheme preserves the zeroth
and first order moments.

In this article, the WFV and MCNP schemes were used due to their
moment preservation and conservation properties and thorough doc-
umentation. Additionally, no other higher order scheme with similar
conservation and preservation properties, yet computationally more
efficient, is currently known to us. The WFV and MCNP schemes were
originally derived for the particle volume 𝑣 as the internal coordi-
nate, which is a common model when aggregation and breakage are
decoupled from the nucleation and growth mechanisms in the PBM.
However, a formulation based on particle size 𝑥 is more convenient
when other mechanisms are also considered in the PBM since the
kinetic expressions for nucleation and growth are often based on par-
ticle size. However, only a few articles, published in the 1990s, have
considered the numerical aspects of the size-based governing equations,
e.g. Lister et al. (1995), Hounslow et al. (1988, 2001), Smit et al.
(1994), who used a sectional method to solve the equations.

All model equations and numerical algorithms described here were
implemented and tested in CADET (von Lieres and Andersson, 2010;
Leweke and von Lieres, 2018), a modular, free, and open-source process
modeling software package with a C++ core and a Python inter-
face. CADET comprises a variety of unit operations, including re-
actors, pumps, valves, tubes, tanks, and uses state-of-art numerical

algorithms and scientific computing techniques to efficiently assemble

2 
and solve the underlying differential–algebraic equations. Arbitrarily
many unit operations can be combined, including closed loops and tem-
poral switches, to facilitate integrated process modeling. CADET uses
the backward differential formula (BDF) implemented in the implicit
differential–algebraic solver (IDAS) as time integrator. Application of
the BDF to the size-based FVP and MCNP schemes yields nonlinear
algebraic equations that are solved using Newton iteration. Automatic
differentiation (AD) was implemented in a previous release to provide
the system Jacobian (Püttmann et al., 2016). However, computing and
carrying over the Jacobian in computer memory using AD requires
computational effort and increases runtime. Hence, analytical Jaco-
bians were derived and implemented to reduce computational burden
and enhance solver performance. Optionally, parameter sensitivities
can be computed using different AD techniques, which provide valuable
information and are required for some optimization algorithms when
inverse problems are considered.

The purpose and scope of the work presented here is to: 1. adapt the
WFV and MCNP schemes to size-based Smoluchowski coagulation and
fragmentation equations and; 2. implement, validate and benchmark
the algorithms for the solution of 1D and 2D cases with a particular
focus on the 2D cases, in the free and open-source software CADET.

2. Governing equations

2.1. Smoluchowski coagulation equation

The Smoluchowski coagulation equation tracks temporal changes in
the particle distribution as a result of particle aggregation/agglomeration
processes. It is based on a representative particle property, which can be
the particle volume or size. The most common continuous formulation
is based on the particle volume 𝑣 as the internal coordinate (Smolu-
chowski, 1916):
𝜕𝑛𝑣
𝜕𝑡

= 1
2 ∫

𝑣

0
𝛽(𝑣 − 𝑣̃, 𝑣̃)𝑛𝑣(𝑣 − 𝑣̃)𝑛𝑣(𝑣̃)d𝑣̃ − 𝑛𝑣(𝑣)∫

∞

0
𝛽(𝑣, 𝑣̃)𝑛𝑣(𝑣̃)d𝑣̃,

n (0, 𝑇end) × R+, where 𝛽 ∶R2 → R is the aggregation kernel specific
o the aggregation mechanism and 𝑛𝑣(𝑡, 𝑣)∶ (0, 𝑇end) × R+ → R+ is the
umber density based on particle volume. On the right hand side of the
quation, the first term is a source term denoting the birth of aggregates
f a given volume while the second term is a sink term denoting the
isappearance of particles of a given volume by aggregation with others
nd become larger particles. Mass is conserved in the aggregation
rocess.

To solve the Smoluchowski coagulation equation along with other
erms of the PBM including particle nucleation and growth which
sually use the particle size 𝑥 ∈ R+ as the internal coordinate, we first
onvert the above equation to a size-based form. According to Houn-
low et al. (2001), Hounslow (1990), the number of particles formed
y aggregation in the volume interval [𝑘𝑣𝑥3, 𝑘𝑣𝑥3 + 𝑑(𝑘𝑣𝑥3)], 𝑑 ∈ R+,
s identical to the number of particles formed in the size interval
𝑥, 𝑥 + 𝑑𝑥], described by the differential:

𝑣d(𝑘𝑣𝑥3) = 𝑛d𝑥, (1)

here 𝑛∶ (0, 𝑇end) × R+ → R+ is the number density function based on
he particle size, and 𝑘𝑣 ∈ R+ is the volumetric particle shape factor.
sing the above identity, the following particle size-based equation is
erived on (0, 𝑇end) × R+ with details provided in the supplementary
aterial section 1:

𝜕𝑛(𝑥)
𝜕𝑡

= 𝑥2

2 ∫

𝑥

0

𝛽
(

(𝑥3 − 𝜆3)
1
3 , 𝜆

)

(𝑥3 − 𝜆3)
2
3

𝑛
(

(𝑥3 − 𝜆3)
1
3
)

𝑛(𝜆)d𝜆

− 𝑛(𝑥)
∞
𝛽(𝑥, 𝜆)𝑛(𝜆)d𝜆.

(2)
∫0
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We note that the first integral converges with lim𝑥→0 𝑛(𝑥) = 0. The
above equation can be extended to accommodate simulations of stirred
tank reactors (STRs) with reactor volume 𝑉 ∶ (0, 𝑇end) → R+

𝜕 (𝑛(𝑥)𝑉 )
𝜕𝑡

= 𝐹𝑖𝑛𝑛𝑖𝑛(𝑥) − 𝐹𝑜𝑢𝑡𝑛(𝑥)+

⎛

⎜

⎜

⎜

⎝

𝑥2

2 ∫

𝑥

0

𝛽
(

(𝑥3 − 𝜆3)
1
3 , 𝜆

)

(𝑥3 − 𝜆3)
2
3

𝑛
(

(𝑥3 − 𝜆3)
1
3

)

𝑛(𝜆)d𝜆 −𝑛(𝑥)∫

∞

0
𝛽(𝑥, 𝜆)𝑛(𝜆)d𝜆

⎞

⎟

⎟

⎟

⎠

,

(3)

here 𝐹𝑖𝑛, 𝐹𝑜𝑢𝑡 ∶ (0, 𝑇end) → R+ are the volumetric inflow and outflow
ates and 𝑛𝑖𝑛 ∶ (0, 𝑇end) × R+ → R+ is the seed distribution entering the
eactor. An additional equation is required to track variations in the
eactor’s volume in the case of unequal inflow and outflow rates:
d𝑉
d𝑡

= 𝐹𝑖𝑛 − 𝐹𝑜𝑢𝑡. (4)

Arbitrary initial conditions for 𝑉 and 𝑛 can be applied to Eqs. (2), (3)
nd (4).

Lastly, the aggregation kernel 𝛽 is specific to the underlying aggre-
ation mechanism. Two kernels were considered in this study: (1) the
onstant kernel 𝛽 ≡ 𝛽0 ∈ R+, and (2) the Golovin kernel 𝛽(𝑥1, 𝑥2) ∶=
0(𝑥31 + 𝑥32). The first kernel represents the simplest mechanism where
ll particles undergo an aggregation process at the same constant rate,
egardless of their size. The second kernel was named after Golovin
fter he provided an analytical solution to a cloud droplet growth
roblem (Golovin, 1963). This kernel describes an aggregation rate
hich is proportional to the sum of the volumes of the aggregating
articles. In addition to the two kernels that are used in this study, we
ave also implemented other kernels in CADET that are commonly seen
n the literature, including the Brownian kernel, Smoluchowski kernel
nd the differential force kernel.

.2. Fragmentation equation

Assigning the particle volume as the internal coordinate, the con-
inuous fragmentation equation is (Saito, 1958):
𝜕𝑛𝑣
𝜕𝑡

= ∫

∞

𝑣
𝑆(𝑣̃)𝑏(𝑣|𝑣̃)𝑛𝑣(𝑣̃)d𝑣̃ − 𝑆(𝑣)𝑛𝑣(𝑣),

in (0, 𝑇end] × R+, where 𝑏∶R+ × R+ → R+ is the probability density
function for the generation of daughter particles and 𝑆 ∶R+ → R+ is
he selection function which determines the rate of fragmentation.

Similar to Eq. (1), the probability density function 𝑏 can also be
onverted to its size-based counterpart:

(𝑣|𝑣̃)d(𝑘𝑣𝑥3) = 𝑏(𝑥|𝜆)d𝑥. (5)

Using the above equation combined with Eq. (1), the following
particle size-based fragmentation equation is derived:
𝜕𝑛(𝑥)
𝜕𝑡

= ∫

∞

𝑥
𝑆(𝜆)𝑏(𝑥|𝜆)𝑛(𝜆)d𝜆 − 𝑆(𝑥)𝑛(𝑥). (6)

And as for coagulation, the above fragmentation equation can be
extended to accommodate STR operations:
𝜕 (𝑛(𝑥)𝑉 )

𝜕𝑡
= 𝐹𝑖𝑛𝑛𝑖𝑛 − 𝐹𝑜𝑢𝑡𝑛 + 𝑉

(

∫

∞

𝑥
𝑆(𝜆)𝑏(𝑥|𝜆)𝑛(𝜆)d𝜆 − 𝑆(𝑥)𝑛(𝑥)

)

. (7)

In case of variable reactor contents volume, Eq. (7) needs to be
solved together with Eq. (4). Arbitrary initial conditions for fIf not
otherwise stated,𝑉 and 𝑛 can be used.

The probability density function 𝑏 for daughter particles must satisfy
two requirements:

∫

𝜆

0
𝑥3𝑏(𝑥|𝜆)d𝑥 = 𝜆3, 𝑁(𝜆) = ∫

𝜆

0
𝑏(𝑥|𝜆)d𝑥 ≥ 1, (8)

where 𝑁 is the total number of daughter particles that a mother particle

can generate on average, meaning that it can be a non-integer number.

3 
The first equation states that the particle of size 𝜆 (volume 𝜆3) is
broken up into smaller particles such that the total particle volume
is conserved. The second equation states that the average number
of daughter particles into which a mother particle breaks cannot be
smaller than one.

Lastly, we have implemented the general expressions for both 𝑏(𝑥|𝜆)
and 𝑆(𝑥) proposed by Randolph and Ranjan (1977):

𝑆(𝑥) = 𝑆0𝑥
3𝛼 , 𝑏(𝑥|𝜆) = 3𝑥2

𝛾
𝜆3

(

𝑥3

𝜆3

)𝛾−2
, (9)

where 𝑆0 ≥ 0 is the breakage rate constant, 𝛼 ∈ R+ reckons the
reakage rate as a function of particle volume and 𝛾 > 1 determines
he average number of daughter particles into which a mother particle
reaks. The probability density function 𝑏 satisfies the requirements
n Eq. (8) and gives 𝑁(𝜆) = 𝛾∕(𝛾 − 1).

.3. Unified governing equations in STRs and DPFRs

Combining the aggregation and fragmentation balances with our
art I work (Zhang et al., 2024), the following governing equation
escribes simultaneous particle nucleation, growth, growth rate dis-
ersion, aggregation and fragmentation processes in an STR format, in
0, 𝑇end] ×R≥𝑥𝑐 , with 𝑥𝑐 > 0 being the minimal particle size considered:

𝜕(𝑛𝑉 )
𝜕𝑡

= 𝐹𝑖𝑛𝑛𝑖𝑛 − 𝐹𝑜𝑢𝑡𝑛 − 𝑉
(

𝜕(𝑣𝐺𝑛)
𝜕𝑥

−𝐷𝑔
𝜕2𝑛
𝜕𝑥2

+𝑥2

2 ∫

𝑥̂

𝑥𝑐

𝛽
(

(𝑥3 − 𝜆3)
1
3 , 𝜆

)

(𝑥3 − 𝜆3)
2
3

𝑛
(

(𝑥3 − 𝜆3)
1
3

)

𝑛(𝜆)d𝜆 − 𝑛(𝑥)∫

∞

𝑥𝑐
𝛽(𝑥, 𝜆)𝑛(𝜆)d𝜆

+∫

∞

𝑥
𝑆(𝜆)𝑏(𝑥|𝜆)𝑛(𝜆)d𝜆 − 𝑆(𝑥)𝑛(𝑥)

)

.

(10)

Note that the upper integral boundary of the aggregation term 𝑥̂ ∶=
(𝑥3 − 𝑥3𝑐 )

1
3 is required to enforce the minimum considered particle size,

which was introduced to model nucleation with a critical nuclei size
𝑥𝑐 via the boundary condition. The nucleation and regularity boundary
conditions are given in (0, 𝑇end]
(

𝑛𝑣𝐺 −𝐷𝑔
𝜕𝑛
𝜕𝑥

)

|

|

|

|𝑥=𝑥𝑐
= 𝐵0,

(

𝑛𝑣𝐺 −𝐷𝑔
𝜕𝑛
𝜕𝑥

)

|

|

|

|𝑥→∞
= 0, (11)

where 𝐵0 ≥ 0 is the nucleation kinetics. To account for the spatial
variations in a DPFR format, we consider axial convection and diffusion
with axial position 𝑧 ∈ [0, 𝐿] as the external coordinate, giving us the
combined governing equation in (0, 𝑇end] × (0, 𝐿] × R+

𝜕𝑛(𝑥, 𝑧)
𝜕𝑡

= −𝑣𝑎𝑥
𝜕𝑛(𝑥, 𝑧)

𝜕𝑧
+𝐷𝑎𝑥

𝜕2𝑛(𝑥, 𝑧)
𝜕𝑧2

−
𝜕(𝑣𝐺(𝑥)𝑛(𝑥, 𝑧))

𝜕𝑥
+𝐷𝑔

𝜕2𝑛(𝑥, 𝑧)
𝜕𝑥2

+ 𝐵0𝛿(𝑥 − 𝑥𝑐 ) +
𝑥2

2 ∫

𝑥̂

𝑥𝑐

𝛽
(

(𝑥3 − 𝜆3)
1
3 , 𝜆, 𝑧

)

(𝑥3 − 𝜆3)
2
3

𝑛
(

(𝑥3 − 𝜆3)
1
3 , 𝑧

)

𝑛(𝜆, 𝑧)d𝜆

− 𝑛(𝑥, 𝑧)∫

∞

𝑥𝑐
𝛽(𝑥, 𝜆, 𝑧)𝑛(𝜆, 𝑧)d𝜆 + ∫

∞

𝑥
𝑆(𝜆, 𝑧)𝑏(𝑥|𝜆, 𝑧)𝑛(𝜆, 𝑧)d𝜆

− 𝑆(𝑥, 𝑧)𝑛(𝑥, 𝑧),

(12)

here 𝐿 ≥ 0 is the column length, 𝑣𝑎𝑥 denotes the axial velocity, and
𝑎𝑥 is the axial dispersion coefficient. This form of the population bal-
nce equation is complemented by the same nucleation and regularity
oundary conditions for the internal coordinate as given in (11). For the
xternal axial direction coordinate, Danckwerts boundary conditions
re used in (0, 𝑇end]:
(

𝑛𝑣𝑎𝑥 −𝐷𝑎𝑥
𝜕𝑛)|

| = 𝑣𝑎𝑥𝑛𝑖𝑛,𝑥,
𝜕𝑛 |

| = 0. (13)

𝜕𝑧 |

|𝑧=0 𝜕𝑧 |
|𝑧=𝐿
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A mass balance equation can be solved along with either of the
STR or DPFR population balance equations to describe the residual
solution concentration of the precipitating or crystallizing solute. Since
mass is conserved by the aggregation and fragmentation processes, the
corresponding mass balance equations are the same as Eq. 8 and Eq.
15 in Zhang et al. (2024) and are omitted here.

3. Finite volume discretization

To apply the finite volume method, we first discretize the internal
coordinate 𝑥 on the particle size domain, obtaining the cell boundaries
𝑥𝑐 = 𝑥 1

2
< 𝑥 3

2
< … < 𝑥𝑖− 1

2
< 𝑥𝑖+ 1

2
. Accordingly, the size of a cell with

index 𝑖 is 𝛥𝑥𝑖 = 𝑥𝑖+ 1
2
− 𝑥𝑖− 1

2
and the cell center is 𝑥𝑖 = (𝑥𝑖+ 1

2
+ 𝑥𝑖− 1

2
)∕2.

The cell average number density 𝑛𝑖 is given by: 𝑛𝑖 = 1
𝛥𝑥𝑖

∫
𝑥
𝑖+ 1

2
𝑥
𝑖− 1

2

𝑛d𝑥.
n this article, we make the assumption that the number density is
oncentrated at the cell centers.

Although the continuous Smoluchowski coagulation equation (2)
s mass conserving, its discretized form by the direct application of
he FVM is no longer mass conserving. To illustrate the problem,
onsider a grid with cell average volumes 1, 4, 9, 16, 25, and 36.

Aggregation of particles with volumes 4 and 16 would result in particles
with volume 20, which is not represented by the grid. Both the WFV
and MCNP schemes handle this problem by introducing weights and
force the discretized governing equations to obey mass conservation
and number preservation. However, these schemes were originally
developed for governing equations with the particle volume as in-
ternal coordinate. Hence, we adapt the WFV and MCNP schemes for
the Smoluchowski coagulation equation (2) and for the fragmentation
equation (6), both with particle size as internal coordinate, and we
prove that our adaptations also obey mass conservation and number
preservation. To facilitate these proofs, we introduce the discrete and
continuous 𝑗th order moment of the number density distribution 𝑛 as:

𝛥
𝑗 =

∞
∑

𝑖=1
𝑛𝑖𝑥

𝑗
𝑖𝛥𝑥𝑖, 𝑀𝑗 = ∫

∞

0
𝑛𝑥𝑗d𝑥, (14)

espectively.

efinition 1. A numerical scheme is third order moment conserving
r total volume conserving if
d𝑀3
d𝑡

= 0, (15)

i.e. the third order moment or total volume does not change over
time.

The total count of particles varies as a function of time, but can be
tracked analytically. For aggregation, integrate equation (2) over the
entire domain giving the total number of particles or zeroth moment:

d𝑀0
d𝑡

= ∫

∞

0

𝑥2

2 ∫

𝑥

0

𝛽
(

(𝑥3 − 𝜆3)
1
3 , 𝜆

)

(𝑥3 − 𝜆3)
2
3

𝑛
(

(𝑥3 − 𝜆3)
1
3
)

𝑛(𝜆)d𝜆d𝑥

− ∫

∞

0 ∫

∞

0
𝛽(𝑥, 𝜆)𝑛(𝜆)𝑛(𝑥)d𝜆d𝑥,

change the order of integration in the first term on the right hand side,

d𝑀0
d𝑡

= ∫

∞

0 ∫

∞

𝜆

𝑥2

2

𝛽
(

(𝑥3 − 𝜆3)
1
3 , 𝜆

)

(𝑥3 − 𝜆3)
2
3

𝑛
(

(𝑥3 − 𝜆3)
1
3
)

𝑛(𝜆)d𝑥d𝜆

− ∫

∞

0 ∫

∞

0
𝛽(𝑥, 𝜆)𝑛(𝜆)𝑛(𝑥)d𝜆d𝑥,

define 𝜆̃ = (𝑥3 − 𝜆3)
1
3 , accordingly for fixed 𝜆 in the inner integral,

𝜆̃ = 𝑥2
2
d𝑥,
(𝑥3 − 𝜆3) 3

4 
change of variables,
d𝑀0
d𝑡

= 1
2 ∫

∞

0 ∫

∞

0
𝛽(𝜆̃, 𝜆)𝑛(𝜆̃)𝑛(𝜆)d𝜆̃d𝜆 − ∫

∞

0 ∫

∞

0
𝛽(𝑥, 𝜆)𝑛(𝜆)𝑛(𝑥)d𝜆d𝑥,

ubstituting 𝑥 by 𝜆̃, the above equation simplifies to
d𝑀0
d𝑡

= −1
2 ∫

∞

0 ∫

∞

0
𝛽(𝜆̃, 𝜆)𝑛(𝜆̃)𝑛(𝜆)d𝜆̃d𝜆,

nvoking the assumption that the mass is concentrated at the cell
enters and approximating the integral using the midpoint quadrature
ule, the discrete zeroth order moment is:

d𝑀𝛥
0

d𝑡
= −1

2

∞
∑

𝑖=1

∞
∑

𝑗=1
𝛽(𝑥𝑖, 𝑥𝑗 )𝑛𝑖𝑛𝑗𝛥𝑥𝑖𝛥𝑥𝑗 . (16)

Therefore,

Definition 2. A numerical scheme for the Smoluchowski coagulation
equation is zeroth order moment preserving or number preserving if it
satisfies Eq. (16).

For fragmentation, integrate equation (6) over the entire domain:
d𝑀0
d𝑡

= ∫

∞

0

(

∫

∞

𝑥
𝑆(𝜆)𝑏(𝑥|𝜆)𝑛(𝜆)d𝜆 − 𝑆(𝑥)𝑛(𝑥)

)

d𝑥

= ∫

∞

0 ∫

∞

𝑥
𝑆(𝜆)𝑏(𝑥|𝜆)𝑛(𝜆)d𝜆d𝑥 − ∫

∞

0
𝑆(𝑥)𝑛(𝑥)d𝑥,

hange the order of integration in the first term on the right hand side

d𝑀0
d𝑡

= ∫

∞

0 ∫

𝜆

0
𝑆(𝜆)𝑏(𝑥|𝜆)𝑛(𝜆)d𝑥d𝜆 − ∫

∞

0
𝑆(𝑥)𝑛(𝑥)d𝑥,

nsert the definition of 𝑁(𝜆)
d𝑀0
d𝑡

= ∫

∞

0
𝑆(𝜆)𝑛(𝜆)𝑁(𝜆)d𝜆 − ∫

∞

0
𝑆(𝑥)𝑛(𝑥)d𝑥,

substituting 𝜆 by 𝑥 the two terms on the right hand side can be
combined to
d𝑀0
d𝑡

= ∫

∞

0
(𝑁(𝑥) − 1)𝑆(𝑥)𝑛(𝑥)d𝑥.

Invoking the assumption that the mass is concentrated at the cell
enters and approximating the integral using the midpoint quadrature
ule, the discrete zeroth order moment is:

d𝑀𝛥
0

d𝑡
=

∞
∑

𝑖=1
(𝑁𝑖 − 1)𝑆𝑖𝑛𝑖𝛥𝑥𝑖, (17)

here 𝑁𝑖 = 𝑁(𝑥𝑖) and 𝑆𝑖 = 𝑆(𝑥𝑖). Therefore,

efinition 3. A numerical scheme for the fragmentation equation
s zeroth order moment preserving or number preserving if it satis-
ies Eq. (17).

.1. The weighted finite volume scheme

In the context of aggregation, we refer to the initially smaller
articles as mother particles and to the resulting larger particles as
aughter particles and define the index set

𝑙 ∶=
{

(𝑗, 𝑘) ∈ N2 ∶ 𝑥𝑙− 1
2
≤ (𝑥3𝑗 + 𝑥3𝑘)

1
3 < 𝑥𝑙+ 1

2

}

, (18)

such that it contains the index combinations of all possible mother
particles for a given daughter particle with index 𝑙. That is, the total
volume of the mother particles is within the cell boundaries of the
specified daughter particle index.

We utilize the WFV approach by Kaur et al. (2017) to discretize
equation (2). The WFV ensures conservation of total mass and preser-
vation of the total number of particles through its assigned weights,
which are based on additive properties like volume or mass. Hence,
we modify the weights to account for the volume 𝑥3, rather than the
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internal size coordinate 𝑥, resulting in the following size-based WFV
ormulation:

𝜕𝑛𝑖
𝜕𝑡

=
∑

(𝑗,𝑘)∈𝐴𝑖
𝑘≥𝑗

(

1 − 1
2
𝛿𝑗,𝑘

)

𝛽𝑗𝑘𝑛𝑗𝑛𝑘
𝛥𝑥𝑗𝛥𝑥𝑘
𝛥𝑥𝑖

𝑥3𝑗 + 𝑥3𝑘
2𝑥3𝑖 − 𝑥3𝑗 − 𝑥3𝑘

−
∞
∑

𝑗=1
𝛽𝑖𝑗𝑛𝑖𝑛𝑗𝛥𝑥𝑗

𝑥3𝑙𝑖𝑗
2𝑥3𝑙𝑖𝑗 − 𝑥3𝑖 − 𝑥3𝑗

,

(19)

where 𝛽𝑗𝑘 = 𝛽(𝑥𝑗 , 𝑥𝑘), 𝛿𝑗,𝑘 is the Kronecker delta and 𝑙𝑖𝑗 is the index
such that (𝑖, 𝑗) ∈ 𝐴𝑙𝑖𝑗 . The above scheme can be used on arbitrary grids.

Proposition 1. The proposed scheme (19) for the Smoluchowski coagula-
tion equation is total volume conserving.

Proof. We start with Eq. (19). Since 𝑗 and 𝑘 are symmetric, eliminate
the constraint 𝑘 ≥ 𝑗 along with the Kronecker delta, leading to the
refactor 1∕2. We then compute the discrete third order moment 𝑀𝛥

3
according to Eq. (14) by multiplying with 𝑥3𝑖 and 𝛥𝑥𝑖 and forming the
sum over all cells:

d𝑀𝛥
3

d𝑡
= 1

2

∞
∑

𝑖=1

∑

(𝑗,𝑘)∈𝐴𝑖
𝛽𝑗𝑘𝑛𝑗𝑛𝑘𝑥

3
𝑖 𝛥𝑥𝑗𝛥𝑥𝑘

𝑥3𝑗 + 𝑥3𝑘
2𝑥3𝑖 − 𝑥3𝑗 − 𝑥3𝑘

−
∞
∑

𝑖=1

∞
∑

𝑗=1
𝛽𝑖𝑗𝑛𝑖𝑛𝑗𝑥

3
𝑖 𝛥𝑥𝑗𝛥𝑥𝑖

𝑥3𝑙𝑖𝑗
2𝑥3𝑙𝑖𝑗 − 𝑥3𝑖 − 𝑥3𝑗

.

The sum over ∑∞
𝑖=1

∑

(𝑗,𝑘)∈𝐴𝑖 can be rewritten as the sum over all
combinations of 𝑗, 𝑘

d𝑀𝛥
3

d𝑡
= 1

2

∞
∑

𝑗=1

∞
∑

𝑘=1
𝛽𝑗𝑘𝑛𝑗𝑛𝑘𝑥

3
𝑙𝑗𝑘
𝛥𝑥𝑗𝛥𝑥𝑘

𝑥3𝑗 + 𝑥3𝑘
2𝑥3𝑙𝑗𝑘 − 𝑥3𝑗 − 𝑥3𝑘

−
∞
∑

𝑖=1

∞
∑

𝑗=1
𝛽𝑖𝑗𝑛𝑖𝑛𝑗𝑥

3
𝑖 𝛥𝑥𝑗𝛥𝑥𝑖

𝑥3𝑙𝑖𝑗
2𝑥3𝑙𝑖𝑗 − 𝑥3𝑖 − 𝑥3𝑗

,

where 𝑙𝑗𝑘 is defined similarly to 𝑙𝑖𝑗 . Since 𝑗 and 𝑘 are symmetric, we
obtain conservation of volume

d𝑀𝛥
3

d𝑡
= 0. □

roposition 2. The proposed scheme (19) for the Smoluchowski coagula-
ion equation is number preserving.

roof. We start with Eq. (19) and eliminate the constraint 𝑘 ≥ 𝑗 along
with the Kronecker delta and produce the discrete zeroth order moment
𝑀𝛥

0 according to Eq. (14) by multiplying with 𝛥𝑥𝑖 and forming the sum
over all cells

d𝑀𝛥
0

d𝑡
= 1

2

∞
∑

𝑖

∑

(𝑗,𝑘)∈𝐴𝑖
𝛽𝑗𝑘𝑛𝑗𝑛𝑘𝛥𝑥𝑗𝛥𝑥𝑘

𝑥3𝑗 + 𝑥3𝑘
2𝑥3𝑖 − 𝑥3𝑗 − 𝑥3𝑘

−
∞
∑

𝑖

∞
∑

𝑗
𝛽𝑖𝑗𝑛𝑖𝑛𝑗𝛥𝑥𝑗𝛥𝑥𝑖

𝑥3𝑙𝑖𝑗
2𝑥3𝑙𝑖𝑗 − 𝑥3𝑖 − 𝑥3𝑗

.

eformulating the sum as in the proof for Proposition 1, we obtain

d𝑀𝛥
0

d𝑡
= 1

2

∞
∑

𝑗

∞
∑

𝑘
𝛽𝑗𝑘𝑛𝑗𝑛𝑘𝛥𝑥𝑗𝛥𝑥𝑘

𝑥3𝑗 + 𝑥3𝑘
2𝑥3𝑖 − 𝑥3𝑗 − 𝑥3𝑘

−
∞
∑

∞
∑

𝛽𝑖𝑗𝑛𝑖𝑛𝑗𝛥𝑥𝑗𝛥𝑥𝑖
𝑥3𝑙𝑖𝑗

2𝑥3 − 𝑥3 − 𝑥3
,

𝑖 𝑗 𝑙𝑖𝑗 𝑖 𝑗

5 
and the sum collapses to

d𝑀𝛥
0

d𝑡
=

∞
∑

𝑗

∞
∑

𝑘
𝛽𝑗𝑘𝑛𝑗𝑛𝑘𝛥𝑥𝑗𝛥𝑥𝑘

(

1
2

𝑥3𝑗 + 𝑥3𝑘
2𝑥3𝑖 − 𝑥3𝑗 − 𝑥3𝑘

−
𝑥3𝑖

2𝑥3𝑖 − 𝑥3𝑗 − 𝑥3𝑘

)

= −1
2

∞
∑

𝑗

∞
∑

𝑘
𝛽𝑗𝑘𝑛𝑗𝑛𝑘𝛥𝑥𝑗𝛥𝑥𝑘.

According to Definition 2, the total number or the discrete zeroth
order moment is preserved. □

3.2. The mass conserving and number preserving scheme

In this section we modify the MCNP scheme introduced by Saha
et al. (2016) to discretize equation (6). To this end, we again substitute
terms of the volume 𝑥3 instead of the internal coordinate 𝑥, and produce
the following size-based formulation:

𝜕𝑛𝑖
𝜕𝑡

=
∞
∑

𝑗=𝑖
𝑆𝑗𝑛𝑗𝛶

𝑏
𝑗

𝛥𝑥𝑗
𝛥𝑥𝑖 ∫

𝑝𝑗𝑖

𝑥
𝑖− 1

2

𝑏(𝑥|𝑥𝑗 )d𝑥 − 𝑆𝑖𝑛𝑖𝛶
𝑑
𝑖 . (20)

The modification factors 𝛶 𝑏
𝑖 and 𝛶 𝑑

𝑖 are given by

𝑏
𝑖 =

𝑥3𝑖 (𝑁𝑖 − 1)
∑𝑖

𝑗=1(𝑥
3
𝑖 − 𝑥3𝑗 ) ∫

𝑥
𝑗+ 1

2
𝑥
𝑗− 1

2

𝑏(𝑥|𝑥𝑖)d𝑥
, 𝛶 𝑑

𝑖 =
𝛶 𝑏
𝑖

𝑥3𝑖

𝑖
∑

𝑗=1
𝑥3𝑗 ∫

𝑝𝑖𝑗

𝑥
𝑗− 1

2

𝑏(𝑥|𝑥𝑖)d𝑥,

(21)

here

𝑗
𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑥𝑖+ 1
2
, 𝑗 = 𝑖;

𝑥𝑖, 𝑗 ≠ 𝑖.
(22)

Specifically, 𝛶 𝑏
1 = 𝑥31(𝑁1 − 1) when 𝑖 = 1. The proposed scheme

can be used on arbitrary grids. Next, we shall prove that the proposed
scheme is total volume conserving and number preserving.

Proposition 3. The proposed scheme (20) for the fragmentation equation
is total volume conserving.

Proof. We begin with Eq. (20) and compute the total volume according
to Eq. (14) by multiplying by 𝑥3𝑖 𝛥𝑥𝑖 and forming the sum over all cells

d𝑀𝛥
3

d𝑡
=

∞
∑

𝑖

∞
∑

𝑗=𝑖
𝑆𝑗𝑛𝑗𝛶

𝑏
𝑗 𝑥

3
𝑖 𝛥𝑥𝑗 ∫

𝑝𝑗𝑖

𝑥
𝑖− 1

2

𝑏(𝑥|𝑥𝑗 )d𝑥

−
∞
∑

𝑖
𝑆𝑖𝑛𝑖𝑥

3
𝑖 𝛥𝑥𝑖𝛶

𝑑
𝑖 .

We change the order of summation for the first term on the right
and side and insert the definition of 𝛶 𝑑

𝑖 and obtain

d𝑀𝛥
3

d𝑡
=

∞
∑

𝑗=1
𝑆𝑗𝑛𝑗𝛥𝑥𝑗𝛶

𝑏
𝑗

𝑗
∑

𝑖=1
𝑥3𝑖 ∫

𝑝𝑗𝑖

𝑥
𝑖− 1

2

𝑏(𝑥|𝑥𝑗 )d𝑥

−
∞
∑

𝑗=1
𝑆𝑗𝑛𝑗𝛥𝑥𝑗𝛶

𝑏
𝑗

𝑗
∑

𝑖=1
𝑥3𝑖 ∫

𝑝𝑗𝑖

𝑥
𝑖− 1

2

𝑏(𝑥|𝑥𝑗 )d𝑥 = 0,

which satisfies Definition 1, indicating that the total volume is con-
served for the proposed scheme. □

Proposition 4. The proposed scheme (20) for the fragmentation equation
s number preserving.

roof. We begin with Eq. (20) and compute the first order moment by
ultiplying with 𝛥𝑥𝑖, and forming the sum over all discrete points

d𝑀𝛥
0

d𝑡
=

∞
∑

∞
∑

𝑗=𝑖
𝑆𝑗𝑛𝑗𝛶

𝑏
𝑗 𝛥𝑥𝑗 ∫

𝑝𝑗𝑖

𝑥 1

𝑏(𝑥|𝑥𝑗 )d𝑥 −
∞
∑

𝑆𝑖𝑛𝑖𝛥𝑥𝑖𝛶
𝑑
𝑖 .
𝑖=1 𝑖− 2
𝑖=1
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We change the order of summation for the first term, insert the
definition of 𝛶 𝑑

𝑗 and simplify the equation to obtain

d𝑀𝛥
0

d𝑡
=

∞
∑

𝑗=1
𝑆𝑗𝑛𝑗𝛥𝑥𝑗𝛶

𝑏
𝑗

⎛

⎜

⎜

⎝

𝑗
∑

𝑖=1
∫

𝑝𝑗𝑖

𝑥
𝑖− 1

2

𝑏(𝑥|𝑥𝑗 )d𝑥 − 1
𝑥3𝑗

𝑗
∑

𝑖=1
𝑥3𝑖 ∫

𝑝𝑗𝑖

𝑥
𝑖− 1

2

𝑏(𝑥|𝑥𝑗 )d𝑥
⎞

⎟

⎟

⎠

=
∞
∑

𝑗=1
𝑆𝑗𝑛𝑗𝛥𝑥𝑗𝛶

𝑏
𝑗
1
𝑥3𝑗

⎛

⎜

⎜

⎝

𝑗
∑

𝑖=1
(𝑥3𝑗 − 𝑥3𝑖 )∫

𝑝𝑗𝑖

𝑥
𝑖− 1

2

𝑏(𝑥|𝑥𝑗 )d𝑥
⎞

⎟

⎟

⎠

.

We substitute the definition of 𝛶 𝑏
𝑗 and obtain

d𝑀𝛥
0

d𝑡
=

∞
∑

𝑗=1
𝑆𝑗𝑛𝑗𝛥𝑥𝑗

𝑥3𝑗 (𝑁𝑗 − 1)
∑𝑖

𝑗=1(𝑥
3
𝑖 − 𝑥3𝑗 ) ∫

𝑥
𝑗+ 1

2
𝑥
𝑗− 1

2

𝑏(𝑥|𝑥𝑖)d𝑥

1
𝑥3𝑗

⎛

⎜

⎜

⎝

𝑗
∑

𝑖=1
(𝑥3𝑗 − 𝑥3𝑖 )∫

𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑏(𝑥|𝑥𝑗 )d𝑥
⎞

⎟

⎟

⎠

=
∞
∑

𝑗=1
(𝑁𝑗 − 1)𝑆𝑗𝑛𝑗𝛥𝑥𝑗 ,

This satisfies Definition 3, indicating that the total particle number
f the proposed scheme is preserved. □

.3. Discretization of the 1D governing equations for batch processes

The WFV and MCNP schemes can be directly applied to discretize
he source and sink terms of the aggregation and fragmentation parts
f Eq. (10), respectively, leaving the axial convection and diffusion
erms un-discretized. We refer to Zhang et al. (2024) for details on
heir FVM discretizations. For the sake of conciseness, we report the
inal results as:

𝑖
𝜕𝑉
𝜕𝑡

+ 𝑉
𝜕𝑛𝑖
𝜕𝑡

= 𝐹𝑖𝑛𝑛𝑖𝑛,𝑖 − 𝐹𝑜𝑢𝑡𝑛𝑖

+
(

−
𝐹𝑖+1∕2 − 𝐹𝑖−1∕2

𝛥𝑥𝑖
+

𝛬𝑖+1∕2 − 𝛬𝑖−1∕2

𝛥𝑥𝑖

+
∑

(𝑗,𝑘)∈𝐴𝑖
𝑘≥𝑗

(

1 − 1
2
𝛿𝑗,𝑘

)

𝛽𝑗𝑘𝑛𝑗𝑛𝑘
𝛥𝑥𝑗𝛥𝑥𝑘
𝛥𝑥𝑖

𝑥3𝑗 + 𝑥3𝑘
2𝑥3𝑖 − 𝑥3𝑗 − 𝑥3𝑘

−
𝑁𝑥
∑

𝑗=1
𝛽𝑖𝑗𝑛𝑖𝑛𝑗𝛥𝑥𝑗

𝑥3𝑙𝑖𝑗
2𝑥3𝑙𝑖𝑗 − 𝑥3𝑖 − 𝑥3𝑗

+
𝑁𝑥
∑

𝑗=𝑖
𝑆𝑗𝑛𝑗𝛶

𝑏
𝑗

𝛥𝑥𝑗
𝛥𝑥𝑖 ∫

𝑝𝑗𝑖

𝑥
𝑖− 1

2

𝑏(𝑥|𝑥𝑗 )d𝑥 − 𝑆𝑖𝑛𝑖𝛶
𝑑
𝑖

⎞

⎟

⎟

⎠

𝑉 ,

(23)

here 𝑛𝑖𝑛,𝑖 = 1
𝛥𝑥𝑖

∫
𝑥
𝑖+ 1

2
𝑥
𝑖− 1

2

𝑛𝑖𝑛d𝑥. 𝐹𝑖±1∕2 and 𝛬𝑖±1∕2 are the convective

nd diffusional numerical fluxes at the 𝑖th left and right cell faces,
espectively. The nucleation source term is enforced as a boundary
ondition. Note that the upper bound of 𝑥 is truncated from infinity
o a sufficiently large number and that 𝑁𝑥 is the total number of cells.

As an upper limit of infinity is assumed in the propositions and proofs
in the above section, we remark that they are strictly true only when
the right boundary of 𝑥 (𝑥max ∈ R) is chosen to be large enough such
hat truncation of the series does not change the sum.

The diffusional numerical flux was reconstructed using a second-
rder approximation for a uniform grid which becomes first-order
or a nonuniform grid. Although the convective numerical flux was
econstructed using four different schemes, we chose only the HR Koren
cheme and the WENO35 scheme for further analysis in this study
s they were found to be the most computationally efficient schemes
n our previous test cases. The exact expressions for these schemes,
long with rigorous benchmarks and discussions of their advantages
nd disadvantages, can be found in Zhang et al. (2024).
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3.4. Discretization of the 2D governing equations for continuous processes

FVM discretizations of Eq. (12) can be done similarly to give:
𝜕𝑛𝑖,𝑝
𝜕𝑡

= −
𝐹𝑖,𝑝+1∕2 − 𝐹𝑖,𝑝−1∕2

𝛥𝑧𝑝
+

𝛬𝑖,𝑝+1∕2 − 𝛬𝑖,𝑝−1∕2

𝛥𝑧𝑝

−
𝐹𝑖+1∕2,𝑝 − 𝐹𝑖−1∕2,𝑝

𝛥𝑥𝑖
+

𝛬𝑖+1∕2,𝑝 − 𝛬𝑖−1∕2,𝑝

𝛥𝑥𝑖

+
∑

(𝑗,𝑘)∈𝐴𝑖
𝑘≥𝑗

(

1 − 1
2
𝛿𝑗,𝑘

)

𝛽𝑗𝑘,𝑝𝑛𝑗,𝑝𝑛𝑘,𝑝
𝛥𝑥𝑗𝛥𝑥𝑘
𝛥𝑥𝑖

𝑥3𝑗 + 𝑥3𝑘
2𝑥3𝑖 − 𝑥3𝑗 − 𝑥3𝑘

−
𝑁𝑥
∑

𝑗=1
𝛽𝑖𝑗,𝑝𝑛𝑖,𝑝𝑛𝑗,𝑝𝛥𝑥𝑗

𝑥3𝑙𝑖𝑗
2𝑥3𝑙𝑖𝑗 − 𝑥3𝑖 − 𝑥3𝑗

+
𝑁𝑥
∑

𝑗=𝑖
𝑆𝑗,𝑝𝑛𝑗,𝑝𝛶

𝑏
𝑗,𝑝

𝛥𝑥𝑗
𝛥𝑥𝑖 ∫

𝑝𝑗𝑖

𝑥
𝑖− 1

2

𝑏(𝑥|𝑥𝑗 , 𝑝)d𝑥 − 𝑆𝑖,𝑝𝑛𝑖,𝑝𝛶
𝑑
𝑖,𝑝,

(24)

here 𝑛𝑖,𝑝 is a two dimensional cell average, 𝐹𝑖,𝑝±1∕2, 𝐹𝑖±1∕2,𝑝 and
𝛬𝑖,𝑝±1∕2, 𝛬𝑖±1∕2,𝑝 are the convective and diffusional numerical fluxes at
the upper/lower and left/right faces of (𝑖, 𝑝)th cell, respectively. Fig. 1
represented these fluxes and the grid used in this study graphically.

3.5. Mass conservation and number preservation properties in the presence
of nucleation, growth and growth rate dispersion

Here we are concerned with whether or not the mass conservation
and number preservation properties of the WFV and MCNP schemes are
still maintained in the presence of the discretized growth terms. Since
the aggregation and fragmentation terms are already discussed above,
we only consider the population balance equation with growth, growth
rate dispersion and nucleation terms here:

𝜕𝑛
𝜕𝑡

= −
𝜕(𝑣𝐺𝑛)
𝜕𝑥

+𝐷𝑔
𝜕2𝑛
𝜕𝑥2

. (25)

Integrating over 𝑥 results in
𝜕𝑀𝑗

𝜕𝑡
= −∫

∞

𝑥𝑐
𝑥𝑗

𝜕(𝑣𝐺𝑛)
𝜕𝑥

d𝑥 +𝐷𝑔 ∫

∞

𝑥𝑐
𝑥𝑗 𝜕

2𝑛
𝜕𝑥2

d𝑥. (26)

We integrate by parts to obtain

𝜕𝑀𝑗

𝜕𝑡
=

(

−𝑥𝑗𝑣𝐺𝑛|∞𝑥𝑐 + ∫

∞

𝑥𝑐
𝑗𝑥𝑗−1𝑣𝐺𝑛d𝑥

)

+ 𝐷𝑔

(

𝑥𝑗 𝜕𝑛
𝜕𝑥

|

|

|

|

∞

𝑥𝑐
− 𝑗𝑥𝑗−1𝑛||

|

∞

𝑥𝑐
+ ∫

∞

𝑥𝑐
𝑗(𝑗 − 1)𝑥𝑗−2𝑛d𝑥

)

.

(27)

When 𝑗 = 0 and 𝑗 = 3, the analytical zeroth and third order moments
re
𝜕𝑀0
𝜕𝑡

= −𝑣𝐺𝑛 +𝐷𝑔
𝜕𝑛
𝜕𝑥

|

|

|

|

∞

𝑥𝑐
, (28)

𝜕𝑀3
𝜕𝑡

= −𝑥3𝑣𝐺𝑛 + 𝑥3𝐷𝑔
𝜕𝑛
𝜕𝑥

+ 3𝐷𝑔𝑥
2𝑛
|

|

|

|

∞

𝑥𝑐

+ ∫

∞

𝑥𝑐
(3𝑥2𝑣𝐺𝑛 + 6𝑥𝐷𝑔𝑛)d𝑥. (29)

Incorporating the nucleation and regularity boundary conditions,
he above equations become:
𝜕𝑀0
𝜕𝑡

= 𝐵0, (30)

𝜕𝑀3
𝜕𝑡

= 𝐵0𝑥
3
𝑐 + 3𝐷𝑔𝑥

2𝑛||
|

∞

𝑥𝑐
+ ∫

∞

𝑥𝑐
(3𝑥2𝑣𝐺𝑛 + 6𝑥𝐷𝑔𝑛)d𝑥

≈ 𝐵0𝑥
3
𝑐 + 3𝐷𝑔(𝑥2𝑚𝑎𝑥𝑛𝑁𝑥

− 𝑥2𝑐𝑛1) +
𝑁𝑥
∑

𝑖=1
(3𝑥2𝑖 𝑣𝐺,𝑖𝑛𝑖𝛥𝑥𝑖 + 6𝑥𝑖𝐷𝑔𝑛𝑖𝛥𝑥𝑖).

(31)
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Fig. 1. Regular quadrilateral grid for 2D cell-centered FVM flux reconstruction. Axial convection fluxes at cell faces are unidirectional and denoted by longer arrows. Axial
dispersion fluxes are bidirectional and denoted by smaller double arrows.
If the numerical discrete zeroth or third order moment is equivalent
to the above equations, then the zeroth or third order moment is
preserved.

The FVM discretized equation (25) is

𝜕𝑛𝑖
𝜕𝑡

= −
𝐹𝑖+1∕2 − 𝐹𝑖−1∕2

𝛥𝑥𝑖
+

𝛬𝑖+1∕2 − 𝛬𝑖−1∕2

𝛥𝑥𝑖
. (32)

As discussed in detail in Zhang et al. (2024), cells near the domain
boundaries were treated differently by reducing the order of the nu-
merical scheme. Therefore, the discrete 𝑗th order moment 𝑀𝛥

𝑗 can be
obtained by multiplying the above equation by 𝑥𝑗𝑖𝛥𝑥𝑖 and summing over
all cells:

𝜕𝑀𝛥
𝑗

𝜕𝑡
=

𝑁𝑥
∑

𝑖=1
−(𝐹𝑖+1∕2 − 𝐹𝑖−1∕2)𝑥

𝑗
𝑖 +

𝑁𝑥
∑

𝑖=1
(𝛬𝑖+1∕2 − 𝛬𝑖−1∕2)𝑥

𝑗
𝑖 . (33)

Recall that at the boundaries, 𝐹1∕2 − 𝛬1∕2 = 𝐵0 and 𝐹𝑁𝑥+1∕2 −
𝛬𝑁𝑥+1∕2 = 0, and we obtain for the zeroth and third order moments

𝜕𝑀𝛥
0

𝜕𝑡
= 𝐹1∕2 − 𝛬1∕2 − (𝐹𝑁𝑥+1∕2 − 𝛬𝑁𝑥+1∕2) = 𝐵0, (34)

𝜕𝑀𝛥
3

𝜕𝑡
= 𝐵0𝑥

3
𝑐 +

1
2

𝑁𝑥−1
∑

𝑖=1
(𝛥𝑥𝑖 + 𝛥𝑥𝑖+1)(𝑥2𝑖 + 𝑥𝑖𝑥𝑖+1

+ 𝑥2𝑖+1)(𝛬𝑖+1∕2 − 𝐹𝑖+1∕2). (35)

Regarding the zeroth order moment, comparing Eqs. (30) and (34),
we conclude that the zeroth order moment is preserved, independent
of the definitions of 𝐹𝑖+1∕2 and 𝛬𝑖+1∕2.

Regarding the third order moment, comparing Eqs. (31) and (35),
we conclude that for the numerical fluxes 𝐹𝑖+1∕2 and 𝛬𝑖+1∕2 defined
in Zhang et al. (2024), the third order moment is not conserved.

As mentioned above, we enforce the nucleation source term through
the boundary conditions and it thus does not influence the mass conser-
vation or number preservation properties of the WFV or MCNP schemes
in this case.

3.6. Mass conservation and number preservation properties for 2D cases

For 2D cases, the moments of the 2D distribution are also two-
dimensional. Here we define the combined continuous 𝑗th order mo-
ment w.r.t. 𝑥 and 𝑘th order moment w.r.t. 𝑧 as:
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𝑀𝑗,𝑘 = ∫

𝐿

0 ∫

𝑥max

𝑥𝑐
𝑛𝑥𝑗𝑧𝑘d𝑥d𝑧. (36)

By definition, the total count of the particles in the reactor is 𝑀0,0
and the total volume or mass of particles in the reactor is 𝑀3,0. That
is, we only consider the zeroth order moment w.r.t. 𝑧. Note that at the
reactor outlet, the distribution 𝑛 is still one-dimensional.

To study the zeroth order moment w.r.t. 𝑧, consider the following
convection–dispersion equation:

𝜕𝑛
𝜕𝑡

= −𝑣𝑎𝑥
𝜕𝑛
𝜕𝑧

+𝐷𝑎𝑥
𝜕2𝑛
𝜕𝑧2

. (37)

A similar analysis as in the last section can be performed and 𝑀0 is
expressed as
𝜕𝑀0
𝜕𝑡

= 𝑣𝑎𝑥𝑛𝑖𝑛 − (𝑣𝑎𝑥𝑛)|𝑧=𝐿, (38)

where 𝐿 is the length of the reactor. The discretized Dankwerts bound-
ary conditions are: 𝐹0.5 − 𝛬0.5 = 𝑣𝑎𝑥𝑐𝑖𝑛 and 𝛬𝑁𝑧+0.5 = 0. Therefore we
obtain:
𝜕𝑀𝛥

0
𝜕𝑡

= 𝑣𝑎𝑥𝑛𝑖𝑛 − 𝐹𝑁𝑐𝑜𝑙+1∕2. (39)

Comparing the above two equations, as 𝐹𝑁𝑐𝑜𝑙+1∕2 is only an approx-
imation to (𝑣𝑎𝑥𝑛)|𝑧=𝐿, we conclude that the zeroth order moment is not
conserved due to the boundary condition of the DPFR. This result is
expected as FVM are mass conserving in the sense that the zeroth order
moment is preserved for intermediate cells but not necessarily at the
domain boundaries (see e.g. LeVeque, 2002). Therefore, we conclude
that neither 𝑀0,0 nor 𝑀3,0 are conserved for 2D cases.

4. Time integrator

As outlined in Zhang et al. (2024), we use a variable-step/variable-
order backward differential formula (BDF) ODE integrator that is imple-
mented in the implicit differential–algebraic solver (IDAS) package in
the suite of non-linear and differential–algebraic equation solvers (SUN-
DIALS) (Hindmarsh et al., 2005) as the time integrator. During each
time step, a Jacobian matrix is required by IDAS. CADET can generate
this Jacobian using algorithmic differentiation (AD) in forward mode as
implemented in a previous release (Püttmann et al., 2016). However,
repeatedly computing the Jacobian using AD, and storing and carrying
it over in the computer memory slows down the simulations. To reduce
the runtime, we provide the solver with an analytical Jacobian.
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We report the Jacobian entries for the 1D WFV schemes as:

𝜕𝐺𝑖
𝜕𝑛𝑗

=
𝑘≥𝑗
∑

𝑗,𝑘∈𝐴𝑖

(

1 − 1
2
𝛿𝑗,𝑘

)

𝛽𝑗𝑘𝑛𝑘
𝛥𝑥𝑗𝛥𝑥𝑘
𝛥𝑥𝑖

𝑥3𝑗 + 𝑥3𝑘
2𝑥3𝑖 − 𝑥3𝑗 − 𝑥3𝑘

,

𝜕𝐺𝑖
𝜕𝑛𝑖

= −
𝑁𝑥
∑

𝑗=1
𝛽𝑖𝑗𝑛𝑗𝛥𝑥𝑗

𝑥3𝑙𝑖𝑗
2𝑥3𝑙𝑖𝑗 − 𝑥3𝑖 − 𝑥3𝑗

,
𝜕𝐺𝑖
𝜕𝑛𝑗

= −𝛽𝑖𝑗𝑛𝑖𝛥𝑥𝑗
𝑥3𝑙𝑖𝑗

2𝑥3𝑙𝑖𝑗 − 𝑥3𝑖 − 𝑥3𝑗
,

(40)

here the first equation provides the Jacobian elements for the source
erm, with symmetric 𝑗 and 𝑘, and the second equation provides the
lements for the sink term. The Jacobian entries for the MCNP scheme
re given by:

𝜕𝐺𝑖
𝜕𝑛𝑗

= 𝑆𝑗𝛶
𝑏
𝑗

𝛥𝑥𝑗
𝛥𝑥𝑖 ∫

𝑝𝑗𝑖

𝑥
𝑖− 1

2

𝑏(𝑥|𝑥𝑗 )d𝑥, 𝑗 ∈ [𝑖,𝑁𝑥),
𝜕𝐺𝑖
𝜕𝑛𝑖

= 𝑆𝑖𝛶
𝑑
𝑖 , (41)

here the first equation is used for the source term and the second
quation is used for the sink term. The correctness of the Jacobian
mplementation was verified by comparison with an AD Jacobian.

. Numerical case studies

We validate the particle size based WFV and MCNP schemes and
heir implementations for aggregation and fragmentation processes by
omparing numerical results with reference solutions for analytically
ractable kernels. We also present several cases where aggregation and
ragmentation are combined with the nucleation, growth and growth
ate dispersion terms solved in our part I work. Convergence rates and
untimes were determined and analyzed. Zeroth to sixth order moments
ere also compared. This range covers all moments of practical impor-

ance. Here, the volume-averaged mean size is defined as the ratio of
he fourth to third order moment (𝑀4∕𝑀3).

For these numerical case studies, the upper boundary is truncated
rom infinity to a finite but sufficiently large particle size. For pure
ggregation, we are concerned with particularly hard test cases with
ggregation levels 𝐼𝑎𝑔𝑔 ≥ 95%, representing a reduction of the total
umber of the particles is below 5% of the initial number at specific
imes, where 𝐼𝑎𝑔𝑔 is defined by

𝑎𝑔𝑔 = 1 −
𝑀0

𝑀0(𝑡 = 0)
. (42)

For comparison, we define a dimensionless 𝑝th order moment 𝑀𝑝
by: 𝑀𝑝 = 𝑀𝑝∕𝑀𝑝(𝑡 = 0). In the literature, initial conditions and
nalytical solutions are mostly reported with particle volume as the
nternal coordinate. In the following, these solutions are converted to

size-based form using Eq. (1). If not otherwise stated, both the IDA
bsolute and relative tolerances are set to 10−6. Logarithmic (base 10)
nd uniform grids are used for the discretization of the internal and
xternal coordinates 𝑥 and 𝑧. All tests and benchmarks are performed
n a 3600 MHz AMD Ryzen(TM) Threadripper(TM) with 32 cores and
4 threads. Simulations were parallelized only for the 2D cases.

Normalized 𝐿1 and 𝐿∞ errors are given by

𝐿1 =
∑𝑁𝑥

𝑖=1 𝛥𝑥𝑖|𝑛
(numerical)
𝑖 − 𝑛(reference)

𝑖 |

∑𝑁𝑥
𝑖=1 𝛥𝑥𝑖𝑛

(reference)
𝑖

,

nd

𝐿∞ =
max1≤𝑖≤𝑁𝑥

(|𝑛(numerical)
𝑖 − 𝑛(reference)

𝑖 |)

max1≤𝑖≤𝑁𝑥
(|𝑛reference

𝑖 |)
.

The 𝐿1 experimental order of convergence (EOC) based on the
nternal coordinate 𝑥 is defined as

OC = log𝑁 (B)
𝑥 ∕𝑁 (A)

𝑥

⎛

⎜

⎜

𝜀(A)
𝐿1

(B)

⎞

⎟

⎟

.

⎝

𝜀
𝐿1 ⎠ R
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The numerical case studies are organized as follows: cases 1 to 5
considered STR batch processes while case 6 to 9 considered DPFR
processes. Case 5 and 9 combined our part I work to consider inclusion
of nucleation and growth mechanisms for unified population balance
modeling.

5.1. Case 1: Constant aggregation kernel in a BSTR

First, we consider a size-independent constant aggregation kernel
with 𝛽 = 𝛽0 = 1. For a batch stirred tank reactor (BSTR) with initial
condition

𝑛(t = 0) = 3𝑥2
𝑁0

𝐿3
0

exp

(

− 𝑥3

𝐿3
0

)

, (43)

(Scott, 1968) provided an analytical solution:

𝑛 =
12𝑁0𝑥2

𝐿3
0(𝑌 + 2)2

exp

(

−2𝑥3

𝐿3
0(𝑌 + 2)

)

,

where 𝑌 = 𝑁0𝛽0𝑡. 𝑁0 and 𝐿0 are the initial number of particles and
the initial mean size, respectively. Hounslow et al. (1988) provided an
analytical solution for the six leading dimensionless moments:

𝑀𝑝 =
( 2
2 + 𝑌

)1−𝑝∕3
.

The parameter values used are reported in Table S2.
Fig. 2(a) shows the numerical and analytical solutions that are in

xcellent agreement. Compared to the situation at 𝑡 = 1 s, at 𝑡 =
s there are more larger particles, which is expected for aggregation

rocesses. The aggregation level 𝐼𝑎𝑔𝑔 increased from 0.83 to 0.95 as
ime elapsed from 1 s to 4 s, indicating the total count of the particles
re reduced by another 12%. Note that accurate estimates of 𝐼𝑎𝑔𝑔
epend on accurate calculations of the total particle count, which un-
erlines the importance of preserving the zeroth order moment with the
FV scheme. Figure S2 shows absolute errors between the numerical

olutions and analytical solutions. Compared to the parts where the
istribution is nearly zero-valued, larger errors are observed where the
istribution values are also large.

To evaluate the accuracy of the moments, numerical and analytical
oments up to sixth order were plotted in Fig. 2(c) and (d) and the
ormalized 𝐿∞ error (𝜀𝐿∞ ) of these moments is reported in the inset of
d). Even for the 𝐼𝑎𝑔𝑔 = 0.95 case, the 𝜀𝐿∞ errors for the leading sixth
oments are small: the zeroth to fourth moments show errors below
.5 percent while the errors of the fifth and sixth moments are below
.5 percent. The zeroth and third order moments are of special interest
s they are preserved and conserved, according to Propostions 1 and
, respectively. The 𝜀𝐿∞ error of the third order moment is 8.9 × 10−14,
hich is practically zero, validating our theory and implementation.
inor errors are seen for the zeroth order moments, which can be

ttributed to a truncation error in the sink term in Eq. (19): indices 𝑙𝑗𝑘
utside the domain boundary (𝑥𝑚𝑎𝑥 = 100 𝜇m) for mother particles of
arge sizes are not counted in the sink term, which causes an imbalance
etween the aggregation source and sink terms. This explanation was
erified by increasing 𝑥𝑚𝑎𝑥 to 500 while keeping a constant relative cell
ize by increasing 𝑁𝑥 = 500. The zeroth order moment 𝜀𝐿∞ decreased
rom to 6.9 × 10−4 to 5.3 × 10−5. Further, despite the fact that the
reservation of other order moments is not theoretically guaranteed,
he proposed scheme captures them accurately with errors smaller than
.5% on a grid with a modest number of cells 𝑁𝑥 = 100.

Unfortunately, a theoretical analysis of the convergence rate of the
FV scheme is not available in the literature and is out of the scope

f this study. Hence, we only report the experimental convergence
ate. Fig. 2(b) shows the normalized 𝐿1 error as a function of the
umber of cells 𝑁𝑥. The slope representing the EOC was found to be
.9. This aligns with our expectation, as the dominating approximation
ade by the schemes is the second order midpoint quadrature rule.
egarding the runtime (Figure S1), we found it to increase at an order
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Fig. 2. Case 1: constant aggregation kernel with 100 logarithmic cells. Dotted and solid curves are numerical and analytical solutions, respectively. Moments and convergence rate
were calculated at 𝑡 = 4 s. (a) Numerical and analytical solutions; (b) convergence analysis; (c) zeroth to third order dimensionless moments; (d) fourth to sixth order dimensionless
moments.
of about 3 when 𝑁𝑥 is increased, indicating a high computational
burden. A possible explanation is that the number of combinations
𝑗 and 𝑘 belonging to set 𝐴𝑙 increased rapidly as the grid resolution
increased, leading to many more combinations of 𝑗 and 𝑘 and the
observed runtime overhead.

5.2. Case 2: Golovin aggregation kernel in a BSTR

In this case, we test our implementation for aggregation with the
size dependent Golovin kernel 𝛽 = 𝛽0(𝑥3𝑗+𝑥

3
𝑘). For a BSTR with the same

initial condition as in the first case, Eq. (43), the 1D Smoluchowski
coagulation equation has an analytical solution (Lister et al., 1995):

𝑛 =
3𝑁0(1 − 𝑇 )

𝑥𝑇 0.5
exp

(

−(1 + 𝑇 ) 𝑥
3

𝐿3
0

)

𝐼1

(

2𝑥3

𝐿3
0

𝑇 0.5

)

,

where 𝑇 = 1 − exp(−𝑌 ) and 𝑌 = 𝑁0𝐿3
0𝛽0𝑡. 𝐼1 is the modified Bessel

function of the first kind of order one. The parameter values used are
reported in Table S1.

Fig. 3(a) shows the numerical and analytical solutions, which were
in excellent visual agreement with each other. The EOC was found to be
1.2% in Fig. 3(b), which is smaller than that in the constant kernel case.
This might be due to the asymptotic nature of numerical convergence,
i.e. the theoretical order of convergence might only be achieved for a
large number of cells which results in excessive computational demand.
We consider further numerical studies to be worthwhile only after a
theoretical order analysis has been derived, which is not yet available
for the WFV. Similar to case 1, larger errors are observed for the parts of
the distribution where the absolute values are also higher (Figure S4).
The runtime also increased at a rate of about 3.0 with increasing 𝑁𝑥
(Figure S3).
9 
5.3. Case 3: Binary fragmentation with linear selection function in a BSTR

In this case study, we test our algorithm and implementation for the
size-based MCNP scheme. Consider uniform particle binary breakage
(𝛾 = 2) with a linear selection function (𝛼 = 1, 𝑆0 = 1) with respect
to the particle volume: 𝑏(𝑥|𝜆) = 6𝑥2∕𝜆3, 𝑆 = 𝑥3. 𝑁𝑗 = 2 indicates that
a mother particle breaks up into two daughter particles on average.
For this distribution 𝑏(𝑥|𝜆), the integral in Eq. (20) can be solved
analytically:

∫

𝑝𝑗𝑖

𝑥
𝑖− 1

2

𝑏(𝑥|𝑥𝑗 )d𝑥 = ∫

𝑝𝑗𝑖

𝑥
𝑖− 1

2

6𝑥2

𝑥3𝑗
d𝑥 =

2
(

(𝑝𝑗𝑖 )
3 − 𝑥3

𝑖− 1
2

)

𝑥3𝑗
.

In a BSTR with initial condition given by Eq. (43), 𝑁0 = 1 and 𝐿0 =
1, the fragmentation equation has an analytical solution (Hounslow
et al., 2001):

𝑛 = 3𝑥2(1 + 𝑡)2𝑒−𝑥
3(1+𝑡).

(Peterson, 1986) has provided analytical solutions for the dimen-
sionless 𝑝th moments 𝑀𝑝:

𝑀𝑝 =
⎛

⎜

⎜

⎝

1 +
⎛

⎜

⎜

⎝

𝛤 ( 𝛾−1𝛼 )

𝛤 ( 𝛾𝛼 )

⎞

⎟

⎟

⎠

𝛼

𝜏
⎞

⎟

⎟

⎠

3−𝑝
3𝛼

,

where 𝛤 is the gamma function and 𝜏 is the dimensionless time defined
by 𝜏 = 𝑆0

(

𝑀3
𝑀0(t=0)

)𝛼
𝑡.

Fig. 4(a) shows the numerical and analytical results. Compared to
the solution at 𝑡 = 1 s, the distribution at 𝑡 = 4 s describes a larger
total number of particles but with a lower average size, indicative of
a fragmentation process. Similar to the aggregation cases, larger errors
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Fig. 3. Case 2: Golovin aggregation kernel with 150 logarithmic cells. Dotted and solid curves are numerical and analytical solutions, respectively. Moments and convergence rate
were calculated at 𝑡 = 3 s. (a) Numerical and analytical solutions; (b) convergence analysis.
Fig. 4. Case 3: binary fragmentation with linear selection function and 100 logarithmic cells. Dotted lines are numerical solutions and solid lines are analytical solutions. (a)
Numerical and analytical solutions; (b) convergence analysis; (c) zeroth to third order dimensionless moments; (d) fourth to sixth order dimensionless moments.
were observed for the parts of the distributions where their absolute
values are also large (Figure S4). As shown in Fig. 4(c) and (d), all
moments were accurately tracked with the largest error of 1.23% in the
sixth order moment. According to Propositions 3 and 4, the zeroth and
third order moments should be preserved and conserved, respectively.
When 𝑁𝑥 = 100, the 𝜀𝐿∞ errors for both moments are 8.0 × 10−7 and
1.6 × 10−9, respectively, which verifies the size-based MCNP scheme
and its implementation. Fig. 4(b) shows an EOC of 2.0, which is again
expected. Here, the runtime increased at a rate of approximately 2.0
with increasing 𝑁𝑥, which was expected to be lower compared to
the aggregation simulations since the costly computation of 𝐴𝑙 is not
required in the fragmentation case.

5.4. Case 4: Simultaneous aggregation and fragmentation in a BSTR

In this case, the Smoluchowski coagulation equation (2) and frag-
mentation equation (6) are solved simultaneously. This setup does not
necessarily yield equilibrium solutions for all combinations of aggrega-
tion and fragmentation kernels and selection functions (Vigil, 2009).
We refer to Vigil (2009), Sorensen et al. (1987) and Vigil and Ziff
10 
(1989) for details and necessary conditions for equilibrium solutions,
and note that equilibrium solutions exist particularly when constant
aggregation kernels are coupled with linear selection functions and
binary fragmentation. In this case, (Patil and Andrews, 1998) provided
an analytical solution which was later simplified by Lage (2002). The
kernels are: 𝛽 = 𝛽0 = 0.2, 𝑆(𝑥) = 𝑆0𝑥3 = 0.1𝑥3, 𝑏(𝑥|𝜆) = 6𝑥2∕𝜆3. In a
BSTR with initial condition

𝑛 = 3𝑀0(t = 0)
(

2𝑀0(t = 0)
𝑀3

)2
𝑥5exp

(

−
2𝑀0(t = 0)

𝑀3
𝑥3
)

,

and when the condition 2𝑆0𝑀3 = 𝛽0(𝑀0(t = 0))2 is fulfilled, the
analytical solution is:

𝑛 =
3(𝑥𝑀0(t = 0))2

𝑀3

2
∑

𝑖=1

𝐾1 + 𝑝𝑖𝐾2
𝐿2 + 4𝑝𝑖

exp(𝑝𝑖𝜂),

where 𝐾1, 𝐾2, 𝑝𝑖, 𝐿2 and 𝜂 are defined in the supplementary material
section 1.

Fig. 5(a) shows the transient behavior of this process. First, the
fragmentation dominated the aggregation process which led to an
increase in the number of small particles and the disappearance of
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Fig. 5. Case 4: simultaneous aggregation and fragmentation. (a) Numerical and analytical solutions at different times; (b) convergence analysis at t = 40 s; (c) total particle count
in the system changes as a function of time; (d): numerical and analytical third order moments.
larger particles. As time elapsed, the increasing aggregation rate of
small particles eventually matched the fragmentation rate, leading to an
equilibrium distribution. The duration of the equilibration process de-
pends on the rate constants of both the aggregation and fragmentation
processes. The equilibration dynamics are also reflected in Fig. 5(c),
which describes the evolution of the total particle count in the system.
The total particle count increased until the aggregation rate matched
the fragmentation rate. A constant total particle count is an important
indicator of whether or not an equilibrium state is reached, which
again underlines the importance of preserving the zeroth order moment
in the WFV and MCNP schemes. Fig. 5(b) shows the EOC to be 3.0
on a logarithmic grid, which is higher than previous cases where
aggregation and breakage were considered separately. The fact that
convergence is an asymptotic property is most certainly the reason for
the EOC exceeding the expected rate of 2.0. As shown in Figure S7, the
runtime increased at a rate of around 3.0 with increasing 𝑁𝑥, which is
expected as the aforementioned computational demands of aggregation
are dominating. The analytical and numerical third order moments are
compared in Fig. 5(d). As expected, it is still conserved with 𝜀𝐿∞ =
2.9 × 10−4 when aggregation and fragmentation are simultaneously
considered, validating our implementation.

5.5. Case 5: Size-dependent growth and constant aggregation kernel in a
BSTR

Consider a case where size-dependent growth and aggregation with
a constant kernel (𝛽 = 𝛽0) take place simultaneously in a BSTR. If the
growth rate is proportional to the particle volume: 𝑣𝐺 = 𝜎𝑣, where 𝜎 > 0
is a constant, the volume-based governing equation reads:
𝜕𝑛𝑣
𝜕𝑡

= −𝜎
𝜕(𝑣𝑛𝑣)
𝜕𝑣

+ 1
2 ∫

𝑣

0
𝛽(𝑣 − 𝑣̃, 𝑣̃)𝑛𝑣(𝑣 − 𝑣̃)𝑛𝑣(𝑣̃)d𝑣̃

− 𝑛𝑣(𝑣)
∞
𝛽(𝑣, 𝑣̃)𝑛𝑣(𝑣̃)d𝑣̃.
∫0
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The above volume-based equation can be converted to the follow-
ing size-based equation with details provided in the supplementary
material:

𝜕𝑛
𝜕𝑡

= −𝜎
3
𝜕(𝑥𝑛)
𝜕𝑥

+ 𝑥2

2 ∫

𝑥

0

𝛽
(

(𝑥3 − 𝜆3)
1
3 , 𝜆

)

(𝑥3 − 𝜆3)
2
3

𝑛
(

(𝑥3 − 𝜆3)
1
3
)

𝑛(𝜆)d𝜆

− 𝑛∫

∞

0
𝛽(𝑥, 𝜆)𝑛(𝜆)d𝜆.

Note the change of 𝜎 to 𝜎∕3. This system has an analytical solution
for the initial condition (Eq. (43)):

𝑛 = 3𝑥2
𝑀2

0
𝑀3

exp
(

−
𝑀0
𝑀3

𝑥3
)

,

where 𝑀0 = 2𝑁0∕(2 + 𝛽0𝑁0𝑡) and 𝑀3 = 𝑁0𝑥30exp(𝜎𝑡). 𝑀0 and 𝑀3 are
also the analytical solutions of the zeroth and third order moments.
Model parameters are reported in Table S4.

Fig. 6(c) shows the analytical and numerical solutions. The nu-
merical solutions with the growth term reconstructed using both the
HR Koren and WENO35 schemes are in excellent agreement with
the analytical solution: a convergence analysis in Fig. 6(a) shows
that both schemes started with approximately the same error, but the
WENO35 scheme converged faster than the HR Koren scheme, both
at a rate of approximately 2.0. This is expected, since the theoretical
convergence rate of the HR Koren scheme is between 1.0 and 2.0. On
the contrary, when the WFV scheme is combined with the WENO35
scheme, the overall EOC of 2.2 is below the theoretical convergence
rate of the WENO35 scheme between 3.0 and 5.0. This is also ex-
pected as the lower order method always dominates the global rate,
which is expected to be 2.0 for the WFV. Further taking the runtime
into consideration, we found that the WFV scheme performed better
when combined with the WENO35 scheme compared to the HR Koren
scheme, as the former always achieved a lower error for a given



W. Zhang et al. Computers and Chemical Engineering 192 (2025) 108860 
Fig. 6. Case 5: simultaneous growth and aggregation. (a) Convergence analysis; (b) error as a function of runtime; (c) numerical and analytical solutions at 𝑡 = 4 s with 𝑁𝑥 = 150;
(d) numerical (dots) and analytical (lines) zeroth and third order moments with 𝑁𝑥 = 150.
runtime. As shown in Figure S8, we found that the runtime increased at
a rate of around 3.0 when 𝑁𝑥 was increased, which is again dominated
by the computational demands of aggregation.

Since growth terms are present in this 1D case, as discussed in Sec-
tion 3.5, the zeroth order moment is still preserved, but the third order
moment is no longer strictly conserved. In Fig. 6(d), when comparing
the numerical moments with the analytical moments, we found that the
𝜀𝐿∞ error was negligibly small (3.2×10−4) for the zeroth order moment.
The error of the third order moment, compared to case 1 where growth
terms are absent and 𝜀𝐿∞ = 8.9 × 10−14, increased due to the presence
of the growth term. However, the error was still small 𝜀𝐿∞ = 4.4×10−3.
As expected, these errors can be further reduced by increasing 𝑁𝑥 from
150 to 300: 𝜀𝐿∞ for the zeroth and third order moment become 7.9×10−5

and 3.9 × 10−3, respectively.

5.6. Case 6: Pure aggregation in a DPFR

In this case study, we consider pure aggregation in a DPFR with the
governing equation (12) and a constant aggregation kernel. Nucleation,
growth, growth rate dispersion, and breakage are disabled by setting
𝐵0 = 𝑣𝐺 = 𝑆 = 𝐷𝑔 = 0. The DPFR is initially devoid of particles, and
particles with a log-normal size distribution are fed to the reactor:

𝑛feed = 𝐴
√

2𝜋𝑤𝑥
exp

(

− ln2 (𝑥∕𝑐)
2𝑤2

)

, (44)

where 𝐴 = 1016, 𝑤 = 0.4 and 𝑐 = 20. A uniform grid was used for the
external coordinate and a logarithmic grid for the internal coordinate.
An analytical solution is not available for this case. Hence, we used a
numerical solution obtained on a fine grid (250 × 450) as reference
solution. Each flux reconstruction scheme (HR Koren and WENO35)
together with the WFV was benchmarked on 5 grid resolutions for the
external coordinate and 5 grid resolutions for the internal coordinate,
resulting in 25 combinations (Table S3). The axial velocity, dispersion
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coefficient, diameter and length of the reactor are specified in Table S6.
They are configured such that the mean residence time in the reactor is
about 85 s. The simulation time of 200 s suffices to obtain a steady-state
solution.

Fig. 7(a) shows the solution at 𝑡 = 130 s inside the reactor. As a
result of aggregation, the number density distribution decreases along
the axial position from the inlet to the outlet of the reactor.

The number of cells 𝑁𝑐𝑜𝑙 along the axial coordinate 𝑧 has a strong
impact on the resulting distribution, as shown in Fig. 8(a). Compared
to a BSTR (𝑁𝑐𝑜𝑙 = 1), the DPFR significantly sharpens the distribution
for the same kinetic parameters. Further increasing 𝑁𝑐𝑜𝑙 only slightly
improved the approximation as shown in Fig. 8(b). This also justified
why we chose a moderate value of 𝑁𝑐𝑜𝑙 = 250 in the reference solution.

In Fig. 9(a), the scatter plot represents all the points tested for
each reconstruction scheme. The Pareto fronts, indicated by the solid
lines, mark the best combinations for discretization, meaning that they
could achieve the best trade-off between approximation error and
computation time. In this case, both HR Koren and WENO35 schemes
performed similarly as their Pareto fronts are very close to each other.
This is also reflected in Fig. 10 where the error decreases as a function
of 𝑁𝑥 and 𝑁𝑐𝑜𝑙. The overall EOC was found to be around 2.0 for
both the HR Koren and WENO35 schemes. This is also expected as
the feed (source) enters the system from the boundaries, limiting the
axial FVM to second order convergence. Further, the WFV is also second
order convergent. The projections of the Pareto fronts onto the 𝑁𝑥-𝑁𝑐𝑜𝑙
plane in Fig. 10 show that it is most efficient to increase 𝑁𝑥 and 𝑁𝑐𝑜𝑙
proportionally. This behavior is expected as otherwise the error in one
coordinate dominates the approximation accuracy.

As depicted in Figure S9, the increase in required computational
time was almost linear in both coordinates on a logarithmic scale,
with the slope (rate) being 2.0 and 1.0 along the 𝑁𝑥 and 𝑁𝑐𝑜𝑙 axes,
respectively, aligning with our previous observations.
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Fig. 7. Full solutions inside the DPFR on a 100 × 100 grid at 𝑡 = 130 s. (a) Case 5: pure aggregation; (b) case 6: pure fragmentation; (c) case 7: simultaneous aggregation and
fragmentation; (d) case 9: nucleation, growth, growth rate dispersion and aggregation.
Fig. 8. Cases 6-7: aggregation or fragmentation in a DPFR. Impact of 𝑁𝑐𝑜𝑙 on the simulated volume fractions obtained at the outlet of the reactor. (a) Case 5: pure aggregation; (c)
case 6: pure fragmentation; (b) and (d): absolute differences between the numerical and analytical results. Curves corresponding to 𝑁𝑐𝑜𝑙 = 13 ∼ 200 are hidden behind 𝑁𝑐𝑜𝑙 = 250
in (a) and (c) due to their small numerical differences seen in (b) and (d).
Furthermore, we compare moments 𝑀0,0 and 𝑀3,0 with a reference
value to evaluate their preservation and conservation properties. In
Fig. 11(a), when keeping 𝑁𝑥 constant but varying 𝑁𝑐𝑜𝑙, the zeroth order
moment varied dramatically such that the differences could be visually
observed, indicating its non-preservation. In Fig. 11(b), when varying
𝑁𝑥, all approximations of 𝑀0,0 remained invariant visually. Further
plotting a normalized absolute difference in Figure S10, we notice that
there are still errors for 𝑀0,0. This is also expected as 𝑀0,0 is not
13 
preserved for the entire reactor as it depends on both 𝑥 and 𝑧, however,
the errors are generally small (< 0.6%) and the solution converges
with increasing grid resolution. A similar analysis was performed for
𝑀3,0 as shown in Fig. 11(c) and (d). Although the conservation of
this moment is not theoretically guaranteed, its errors are small (<
1.6%) and the solution converges with increasing grid resolution. The
WENO35 scheme shows similar behavior as the HR Koren scheme and
is omitted here.



W. Zhang et al.

Fig. 9. Cases 6-9: normalized 𝐿1 errors over runtime for DPFR cases. Points indicate tested combinations of grid resolution and the solid lines are Pareto fronts. (a) Case 6: pure
aggregation; (b) case 7: pure fragmentation; (c) case 8: simultaneous aggregation and fragmentation; (d) case 9: nucleation, growth and aggregation.

Fig. 10. Case 6: pure aggregation in a DPFR. Top: Normalized 𝐿1 error as a function of 𝑁𝑥 and 𝑁𝑐𝑜𝑙 . Solid lines are the Pareto fronts. Bottom: projections of the Pareto fronts
to the 𝑁𝑥-𝑁𝑐𝑜𝑙 plane. (a): WENO35; (b): HR Koren.
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Fig. 11. Numerical and reference 𝑀3,0 and 𝑀0,0 for the entire reactor in case 6: (a): 𝑀0,0 vs. 𝑁𝑐𝑜𝑙 ; (b): 𝑀0,0 vs. 𝑁𝑥; (c): 𝑀3,0 vs. 𝑁𝑐𝑜𝑙 ; (d): 𝑀3,0 vs. 𝑁𝑥. Results were obtained
using HR Koren scheme.
Lastly, in addition to the 2D moments, we also evaluated two impor-
tant scalar metrics, the volume-averaged mean size and the total count
of the particles, calculated from moments of the outlet distribution at
steady state. Fig. 12 shows their relative errors as a function of 𝑁𝑥 and
𝑁𝑐𝑜𝑙. The errors for these metrics were clearly decreasing when 𝑁𝑥 and
𝑁𝑐𝑜𝑙 were increased. The observed behavior is not surprising as neither
of these metrics is guaranteed to be preserved. However, their errors
were generally small, ∼ 1%, even on coarse grids.

5.7. Case 7: Pure fragmentation in a DPFR

In this case study, we consider a fragmentation process in a DPFR
with governing equation (12). A linear selection function and binary
particle fragmentation, the same as in case 3, are considered. Nucle-
ation, growth, growth rate dispersion, and aggregation are disabled by
setting 𝐵0 = 𝑣𝐺 = 𝑆 = 𝛽 = 0. The DPFR is free of particles initially and
particles with a seed distribution according to Eq. (44) are fed into the
reactor at the inlet. The testing procedure is the same as described in
the previous case. Further model parameters are given in Table S5 and
Table S7.

A full solution is shown in Fig. 7(b). As a natural result of the
fragmentation, the area under the distribution increases towards the
outlet of the reactor. The influence of 𝑁𝑐𝑜𝑙 on the accuracy of the
numerical solution at the reactor outlet is depicted in Fig. 8(c). Similar
to the above case, except for 𝑁𝑐𝑜𝑙 = 1, increasing 𝑁𝑐𝑜𝑙 only slightly
improved the solution (Fig. 8(d)).

As shown in Fig. 9(b), both the WENO35 and HR Koren schemes had
similar performance with an overlap in their Pareto fronts, indicating
that a similar error can be achieved in similar compute time. When
the Pareto fronts are projected onto the 𝑁𝑥-𝑁𝑐𝑜𝑙 plane (Figure S12),
we found that increasing 𝑁𝑥 and 𝑁𝑐𝑜𝑙 proportionally is an efficient
method to stay on the Pareto fronts for the same reason explained in
the previous case. Further, errors decreased at a rate of approximately
15 
2 along both the 𝑁𝑥 and 𝑁𝑐𝑜𝑙 axes. The runtime depicted in Figure S11
increased at a first order rate when increasing 𝑁𝑐𝑜𝑙 while a rate of
two was observed when increasing 𝑁𝑥. A rate of approximately 2 is
likely due to the rapid increase in the number of iterations for 𝑗 to
compute the modification factors in the MCNP scheme (21) as 𝑁𝑥 (or
𝑖) increased. These observations were similar to those for the pure
aggregation in DPFR case.

Lastly, the moments 𝑀0,0 and 𝑀3,0 are evaluated in Figure S14 and
their normalized absolute error is plotted in Figure S15. Similar to the
last test case, despite the fact that they are not strictly preserved, the
errors are small even on a coarse grid (< 3.5%) and exhibit convergent
behavior when the grid resolution improves. Regarding the mean size
and the total count at the reactor outlet (Figure S13), all errors were
also very small (< 1%) and converged with increasing 𝑁𝑥 or 𝑁𝑐𝑜𝑙.

5.8. Case 8: Simultaneous aggregation and fragmentation in a DPFR

In this case study, we consider an aggregation-fragmentation equi-
librium in a DPFR. The ratio of the aggregation and fragmentation rate
constants (𝛽0 = 2.4 × 10−12, 𝑆0 = 6 × 1010), chosen arbitrarily for this
test, determines the distribution 𝑛 at equilibrium. We apply the same
verification procedure as before. Parameters are given in Table S5 and
Table S8.

As described in case 4 for STR processes, equilibrium solutions occur
only for specific choices of aggregation and fragmentation kernels.
However, even when an equilibrium solution exists, whether or not
it can be observed depends on several time scales: 1. the time for
the flow to reach the steady state; 2. the time when the observation
is made; and 3. the reaction time required to reach the aggregation-
fragmentation equilibrium if it exists. There are two requirements to
observe the equilibrium solution at the outlet. First, the reaction time
must be smaller than the time to achieve steady state. Otherwise only
the transient behavior of the aggregation-fragmentation process can be
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Fig. 12. Case 6: pure aggregation in a DPFR. Errors of the mean size and total count based on the outlet solution as a function of 𝑁𝑥-𝑁𝑐𝑜𝑙 .
observed. Second, the observation time must be larger than the time
required to achieve steady state. Otherwise, only the transient behavior
of the solute transport process can be observed. These requirements can
be satisfied by carefully designing model parameters and observing the
full solutions inside the DPFR. An example is shown in Fig. 7(c), where
equilibrium was established near the end of the reactor.

As before, we observe similar Pareto fronts and performance for the
WENO35 and HR Koren schemes, as depicted in Fig. 9(c). In either
case, increasing 𝑁𝑥 in the WFV and MCNP scheme led to an increased
runtime at a rate of around 3.0 while increasing 𝑁𝑐𝑜𝑙 only increased
the runtime at a rate of 1.0. The EOC was found to be around 2.0 when
increasing 𝑁𝑥 or 𝑁𝑐𝑜𝑙. That these similar rates were observed for both
the WENO35 and HR Koren schemes also explains Figure S17: to stay
on the Pareto fronts, increasing 𝑁𝑥 and 𝑁𝑐𝑜𝑙 proportionally is efficient
for both schemes.

The moments 𝑀0,0 and 𝑀3,0 in Figure S18 and Figure S20, the total
particle count and mean size in Figure S19 behave similarly to the
previous case where convergence and very small errors (< 3.5%) even
on coarse grids are observed.

5.9. Case 9: Nucleation, growth, growth rate dispersion and aggregation in
a DPFR

In this test case, we combine the aggregation term considered in
this work with the nucleation, growth, growth rate dispersion terms
and the mass balance equation in our part I work. This test case is
useful for continuous crystallization or precipitation processes (Raphael
and Rohani, 1999; Alvarez and Myerson, 2010; Li et al., 2023; Ghosh
et al., 2023). Here we consider a constant aggregation kernel combined
with size-independent growth, growth rate dispersion and primary and
secondary nucleation mechanisms. Model parameters can be found in
Table S5 and Table S9. A full solution inside the DPFR is shown in
Fig. 7(d). The testing procedure is the same as for case 6.

Regarding the Pareto fronts in Fig. 9(d), similar to the previous
cases, the WENO35 and HR Koren scheme were equivalent in perfor-
mance. We also found that increasing 𝑁 increased the runtime at a rate
𝑥
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of around 2.5 while a rate of 1.0 was observed when increasing 𝑁𝑐𝑜𝑙
(Figure S21). The EOC was found to be around 3.0 when increasing
either 𝑁𝑥 or 𝑁𝑐𝑜𝑙. As shown in Fig. 13, we again observe that propor-
tionally increasing 𝑁𝑥 and 𝑁𝑐𝑜𝑙 is most efficient to stay on the Pareto
fronts.

Fig. 14(a) shows convergence behaviors of 𝑀0,0 when increasing
𝑁𝑐𝑜𝑙. For other situations in Figs. 14(b), (c) and (d) where it is hard to
quantify the errors visually, the normalized absolute errors are plotted
in Figure S23. Compared to previous cases where there is only pure ag-
gregation and/or fragmentation, errors in this case obviously increase:
a maximum error of ∼ 14% is observed for 𝑀3,0 in Fig. 14(c) and (d). In
contrast, a much smaller error of < 1.3% is observed in Fig. 14(b). This
is not surprising as the growth and growth rate dispersion terms still
preserve the zeroth order moment about 𝑥 according to Section 3.5.
Overall, these results align well with our previous findings such that
these moments are no longer strictly conserved or preserved. Further,
evaluating the errors of the total count and mean size of the outlet
distribution in Figure S22, similar convergence behaviors are observed.
This is expected as no moment is strictly preserved in this case.

6. Conclusions and outlook

This contribution is an extension to our part I work in which we
solved the PBM in STR and DPFR formats while considering nucleation,
growth, growth rate dispersion, axial convection and diffusion pro-
cesses in the free and open-source process modeling package CADET. In
this work, we further adapted the WFV and MCNP schemes to discretize
the size-based Smoluchowski coagulation and fragmentation equations
to account for particle aggregation and fragmentation processes. In
addition to their formulation for an STR format, both equations were
also formulated for a DPFR format that included axial convection and
diffusion along the external coordinate.

All equations were implemented in CADET with analytical Jaco-
bians derived and implemented to reduce the computation time. The
implementations were further verified and benchmarked in nine case

studies. The numerical approximations were in excellent agreement
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Fig. 13. Case 9: nucleation, growth, growth rate dispersion and aggregation in a DPFR. Top: Normalized 𝐿1 error as a function of 𝑁𝑥 and 𝑁𝑐𝑜𝑙 . Solid lines are the Pareto fronts.
Bottom: projections of the Pareto fronts to the 𝑁𝑥-𝑁𝑐𝑜𝑙 plane. (a): WENO35; (b): HR Koren.

Fig. 14. Numerical and reference 𝑀3,0 and 𝑀0,0 for the entire reactor in case 9: (a): 𝑀0,0 vs. 𝑁𝑐𝑜𝑙 ; (b): 𝑀0,0 vs. 𝑁𝑥; (c): 𝑀3,0 vs. 𝑁𝑐𝑜𝑙 ; (d): 𝑀3,0 vs. 𝑁𝑥. Results were obtained
using HR Koren scheme.
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with analytical solutions when available. We observed second order
convergence of the size-based WFV and MCNP schemes on logarithmic
grids for the 1D cases. The second-order rate was attributed to the un-
derlying second-order midpoint quadrature approximation. The zeroth
and third order moments were accurately captured for all 1D cases.

lthough preservation of other order moments was not guaranteed
heoretically, they were still approximated with high accuracy.

In the 2D cases, comprising particle processes occurring in the DPFR
ormat, we compared both the WENO35 and HR Koren schemes as axial
lux reconstruction methods. Both schemes gave similar results in all
ases due to an overall second order convergence rate when combined
ith either the WFV or MCNP scheme. After a careful analysis of the
ormalized 𝐿1 error and runtime, we found that increasing 𝑁𝑥 and 𝑁𝑐𝑜𝑙

proportionally reduced the error most efficiently for a given runtime.
Both the size-based WFV and MCNP schemes were proven to con-

serve and preserve total particle volume and particle count, respec-
tively. However, these preservation properties depend on the boundary
conditions when combined with other terms in the PBM. We math-
ematically proved and numerically verified that in 1D cases where
growth and growth rate dispersion are considered, the total count is
still preserved, but the total volume is not strictly conserved. Similarly,
in the 2D cases, where axial convection and diffusion were considered,
all moments were no longer strictly preserved. They are, however, accu-
rate approximations except on very coarse grids. Convergent behaviors
were also observed for their errors.

A future direction would be to provide a rigorous theoretical anal-
ysis of the convergence behaviors of the size-based WFV and MCNP
schemes. Moreover, the high-order flux construction schemes could be
modified to force the discretized 1D equations to conserve the third
order moment (Kumar et al., 2013) when combined with growth terms,
and a convergence analysis could be provided for the modified schemes.
Another promising direction is the development of a higher order FEM
to improve computational efficiency. A suitable FEM can be developed
which preserves and conserves the zeroth and third order moments
while retaining higher convergence order. Moreover, a stabilization
mechanism can be considered to adequately resolve steep gradients
when combined with nucleation and growth terms.
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