001030744 001__ 1030744
001030744 005__ 20250203133204.0
001030744 0247_ $$2doi$$a10.1016/j.neubiorev.2024.105544
001030744 0247_ $$2ISSN$$a0149-7634
001030744 0247_ $$2ISSN$$a1873-7528
001030744 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05451
001030744 0247_ $$2pmid$$a38220034
001030744 0247_ $$2WOS$$aWOS:001178470000001
001030744 037__ $$aFZJ-2024-05451
001030744 082__ $$a610
001030744 1001_ $$0P:(DE-HGF)0$$aAziz-Safaie, Taraneh$$b0$$eCorresponding author
001030744 245__ $$aThe effect of task complexity on the neural network for response inhibition: An ALE meta-analysis
001030744 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
001030744 3367_ $$2DRIVER$$aarticle
001030744 3367_ $$2DataCite$$aOutput Types/Journal article
001030744 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1726148067_27396
001030744 3367_ $$2BibTeX$$aARTICLE
001030744 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001030744 3367_ $$00$$2EndNote$$aJournal Article
001030744 500__ $$aThis study was supported by the Helmholtz Portfolio Theme “Supercomputing and Modeling for the Human Brain” and the National Institute of Mental Health (R01-MH074457).
001030744 520__ $$aResponse inhibition is classically investigated using the go/no-go (GNGT) and stop-signal task (SST), which conceptually measure different subprocesses of inhibition. Further, different task versions with varying levels of additional executive control demands exist, making it difficult to identify the core neural correlates of response inhibition independent of variations in task complexity. Using neuroimaging meta-analyses, we show that a divergent pattern of regions is consistently involved in the GNGT versus SST, arguing for different mechanisms involved when performing the two tasks. Further, for the GNGT a strong effect of task complexity was found, with regions of the multiple demand network (MDN) consistently involved particularly in the complex GNGT. In contrast, both standard and complex SST recruited the MDN to a similar degree. These results complement behavioral evidence suggesting that inhibitory control becomes automatic after some practice and is performed without input of higher control regions in the classic, standard GNGT, but continues to be implemented in a top-down controlled fashion in the SST.
001030744 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001030744 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001030744 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001030744 7001_ $$0P:(DE-Juel1)131699$$aMüller, Veronika I.$$b1$$ufzj
001030744 7001_ $$0P:(DE-Juel1)131693$$aLangner, Robert$$b2$$ufzj
001030744 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b3$$ufzj
001030744 7001_ $$0P:(DE-Juel1)131855$$aCieslik, Edna C.$$b4$$eCorresponding author$$ufzj
001030744 773__ $$0PERI:(DE-600)1498433-7$$a10.1016/j.neubiorev.2024.105544$$gVol. 158, p. 105544 -$$p105544 -$$tNeuroscience & biobehavioral reviews$$v158$$x0149-7634$$y2024
001030744 8564_ $$uhttps://juser.fz-juelich.de/record/1030744/files/1-s2.0-S0149763424000125-main.pdf$$yOpenAccess
001030744 8564_ $$uhttps://juser.fz-juelich.de/record/1030744/files/1-s2.0-S0149763424000125-main.gif?subformat=icon$$xicon$$yOpenAccess
001030744 8564_ $$uhttps://juser.fz-juelich.de/record/1030744/files/1-s2.0-S0149763424000125-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001030744 8564_ $$uhttps://juser.fz-juelich.de/record/1030744/files/1-s2.0-S0149763424000125-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001030744 8564_ $$uhttps://juser.fz-juelich.de/record/1030744/files/1-s2.0-S0149763424000125-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001030744 8767_ $$d2024-09-09$$eHybrid-OA$$jDEAL
001030744 909CO $$ooai:juser.fz-juelich.de:1030744$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001030744 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a HHU Düsseldorf$$b0
001030744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131699$$aForschungszentrum Jülich$$b1$$kFZJ
001030744 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131699$$a HHU Düsseldorf$$b1
001030744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131693$$aForschungszentrum Jülich$$b2$$kFZJ
001030744 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131693$$a HHU Düsseldorf$$b2
001030744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b3$$kFZJ
001030744 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b3
001030744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131855$$aForschungszentrum Jülich$$b4$$kFZJ
001030744 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131855$$a HHU Düsseldorf$$b4
001030744 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001030744 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001030744 9141_ $$y2024
001030744 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001030744 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001030744 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001030744 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001030744 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001030744 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001030744 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-18$$wger
001030744 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001030744 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001030744 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001030744 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-18
001030744 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-18
001030744 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2024-12-18
001030744 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001030744 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROSCI BIOBEHAV R : 2022$$d2024-12-18
001030744 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001030744 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001030744 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROSCI BIOBEHAV R : 2022$$d2024-12-18
001030744 920__ $$lyes
001030744 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001030744 980__ $$ajournal
001030744 980__ $$aVDB
001030744 980__ $$aUNRESTRICTED
001030744 980__ $$aI:(DE-Juel1)INM-7-20090406
001030744 980__ $$aAPC
001030744 9801_ $$aAPC
001030744 9801_ $$aFullTexts