Home > Publications database > The effect of task complexity on the neural network for response inhibition: An ALE meta-analysis > print |
001 | 1030744 | ||
005 | 20250203133204.0 | ||
024 | 7 | _ | |a 10.1016/j.neubiorev.2024.105544 |2 doi |
024 | 7 | _ | |a 0149-7634 |2 ISSN |
024 | 7 | _ | |a 1873-7528 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-05451 |2 datacite_doi |
024 | 7 | _ | |a 38220034 |2 pmid |
024 | 7 | _ | |a WOS:001178470000001 |2 WOS |
037 | _ | _ | |a FZJ-2024-05451 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Aziz-Safaie, Taraneh |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a The effect of task complexity on the neural network for response inhibition: An ALE meta-analysis |
260 | _ | _ | |a Amsterdam [u.a.] |c 2024 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1726148067_27396 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a This study was supported by the Helmholtz Portfolio Theme “Supercomputing and Modeling for the Human Brain” and the National Institute of Mental Health (R01-MH074457). |
520 | _ | _ | |a Response inhibition is classically investigated using the go/no-go (GNGT) and stop-signal task (SST), which conceptually measure different subprocesses of inhibition. Further, different task versions with varying levels of additional executive control demands exist, making it difficult to identify the core neural correlates of response inhibition independent of variations in task complexity. Using neuroimaging meta-analyses, we show that a divergent pattern of regions is consistently involved in the GNGT versus SST, arguing for different mechanisms involved when performing the two tasks. Further, for the GNGT a strong effect of task complexity was found, with regions of the multiple demand network (MDN) consistently involved particularly in the complex GNGT. In contrast, both standard and complex SST recruited the MDN to a similar degree. These results complement behavioral evidence suggesting that inhibitory control becomes automatic after some practice and is performed without input of higher control regions in the classic, standard GNGT, but continues to be implemented in a top-down controlled fashion in the SST. |
536 | _ | _ | |a 5252 - Brain Dysfunction and Plasticity (POF4-525) |0 G:(DE-HGF)POF4-5252 |c POF4-525 |f POF IV |x 0 |
536 | _ | _ | |a 5254 - Neuroscientific Data Analytics and AI (POF4-525) |0 G:(DE-HGF)POF4-5254 |c POF4-525 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Müller, Veronika I. |0 P:(DE-Juel1)131699 |b 1 |u fzj |
700 | 1 | _ | |a Langner, Robert |0 P:(DE-Juel1)131693 |b 2 |u fzj |
700 | 1 | _ | |a Eickhoff, Simon B. |0 P:(DE-Juel1)131678 |b 3 |u fzj |
700 | 1 | _ | |a Cieslik, Edna C. |0 P:(DE-Juel1)131855 |b 4 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1016/j.neubiorev.2024.105544 |g Vol. 158, p. 105544 - |0 PERI:(DE-600)1498433-7 |p 105544 - |t Neuroscience & biobehavioral reviews |v 158 |y 2024 |x 0149-7634 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1030744/files/1-s2.0-S0149763424000125-main.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1030744/files/1-s2.0-S0149763424000125-main.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1030744/files/1-s2.0-S0149763424000125-main.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1030744/files/1-s2.0-S0149763424000125-main.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1030744/files/1-s2.0-S0149763424000125-main.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1030744 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131699 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 1 |6 P:(DE-Juel1)131699 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131693 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)131693 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131855 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 4 |6 P:(DE-Juel1)131855 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5252 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5254 |x 1 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a DEAL: Elsevier 09/01/2023 |0 PC:(DE-HGF)0125 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-18 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1120 |2 StatID |b BIOSIS Reviews Reports And Meetings |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEUROSCI BIOBEHAV R : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NEUROSCI BIOBEHAV R : 2022 |d 2024-12-18 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|