001     1030744
005     20250203133204.0
024 7 _ |a 10.1016/j.neubiorev.2024.105544
|2 doi
024 7 _ |a 0149-7634
|2 ISSN
024 7 _ |a 1873-7528
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05451
|2 datacite_doi
024 7 _ |a 38220034
|2 pmid
024 7 _ |a WOS:001178470000001
|2 WOS
037 _ _ |a FZJ-2024-05451
082 _ _ |a 610
100 1 _ |a Aziz-Safaie, Taraneh
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a The effect of task complexity on the neural network for response inhibition: An ALE meta-analysis
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1726148067_27396
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This study was supported by the Helmholtz Portfolio Theme “Supercomputing and Modeling for the Human Brain” and the National Institute of Mental Health (R01-MH074457).
520 _ _ |a Response inhibition is classically investigated using the go/no-go (GNGT) and stop-signal task (SST), which conceptually measure different subprocesses of inhibition. Further, different task versions with varying levels of additional executive control demands exist, making it difficult to identify the core neural correlates of response inhibition independent of variations in task complexity. Using neuroimaging meta-analyses, we show that a divergent pattern of regions is consistently involved in the GNGT versus SST, arguing for different mechanisms involved when performing the two tasks. Further, for the GNGT a strong effect of task complexity was found, with regions of the multiple demand network (MDN) consistently involved particularly in the complex GNGT. In contrast, both standard and complex SST recruited the MDN to a similar degree. These results complement behavioral evidence suggesting that inhibitory control becomes automatic after some practice and is performed without input of higher control regions in the classic, standard GNGT, but continues to be implemented in a top-down controlled fashion in the SST.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Müller, Veronika I.
|0 P:(DE-Juel1)131699
|b 1
|u fzj
700 1 _ |a Langner, Robert
|0 P:(DE-Juel1)131693
|b 2
|u fzj
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 3
|u fzj
700 1 _ |a Cieslik, Edna C.
|0 P:(DE-Juel1)131855
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.neubiorev.2024.105544
|g Vol. 158, p. 105544 -
|0 PERI:(DE-600)1498433-7
|p 105544 -
|t Neuroscience & biobehavioral reviews
|v 158
|y 2024
|x 0149-7634
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1030744/files/1-s2.0-S0149763424000125-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1030744/files/1-s2.0-S0149763424000125-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1030744/files/1-s2.0-S0149763424000125-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1030744/files/1-s2.0-S0149763424000125-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1030744/files/1-s2.0-S0149763424000125-main.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1030744
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131699
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)131699
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131693
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)131693
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131855
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)131855
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 1
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Elsevier 09/01/2023
|0 PC:(DE-HGF)0125
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1120
|2 StatID
|b BIOSIS Reviews Reports And Meetings
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROSCI BIOBEHAV R : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROSCI BIOBEHAV R : 2022
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21