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Sex differences in functional cortical
organization reflect differences in network
topology rather than cortical morphometry

Bianca Serio 1,2,3,4 , Meike D. Hettwer 1,2,3,4, Lisa Wiersch 1,2,5,
GiacomoBignardi3,6, Julia Sacher3,4,7,8, SusanneWeis 1,2, SimonB. Eickhoff1,2,3&
Sofie L. Valk 1,2,3,4

Differences in brain size between the sexes are consistently reported. How-
ever, the consequences of this anatomical difference on sex differences in
intrinsic brain function remain unclear. In the current study, we investigate
whether sex differences in intrinsic cortical functional organization may be
associated with differences in cortical morphometry, namely different mea-
sures of brain size, microstructure, and the geodesic distance of connectivity
profiles. For this, we compute a low dimensional representation of functional
cortical organization, the sensory-association axis, and identify widespread
sex differences. Contrary to our expectations, sex differences in functional
organization do not appear to be systematically associated with differences in
total surface area, microstructural organization, or geodesic distance, despite
these morphometric properties being per se associated with functional orga-
nization and differing between sexes. Instead, functional sex differences in the
sensory-association axis are associated with differences in functional con-
nectivity profiles and network topology. Collectively, our findings suggest that
sex differences in functional cortical organization extend beyond sex differ-
ences in cortical morphometry.

Sex differences in human global brain size are robust and widely
acknowledged1–7, but the functional implications of this anatomical
difference are not well understood. Indeed, sex differences in intrinsic
brain function are sometimes deemed small or negligible beyond dif-
ferences attributed to brain size2. Nevertheless, diverging patterns of
functional connectivity between males and females have been repor-
ted even when controlling for differences in brain size and most con-
sistently in sensory and association regions5,8,9. These regions in fact
represent the two anchors of a key principle of hierarchical functional
organization, the sensory-association (S-A) axis, differentiating

localized primary sensory/motor areas from a more distributed set of
transmodal association regions, including regions belonging to the
frontoparietal and default mode networks (DMN)10,11. However, the
extent to which sex differences in intrinsic functional cortical organi-
zation may be explained by neuroanatomical differences relating to
brain size remains unclear.

In order to understand how sex differences in brain size may
pertain to sex differences in brain function, it is first necessary to
understand the relevance of brain size for overall functional cortical
organization. Brain size and its variability may have important
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consequences for the spatial distribution of sensory and association
areas across the cortical mantle, as illustrated by clear scaling patterns
over evolution12,13 and development14. In fact, over the past 4 million
years, hominin evolution has not only shown a general trend of
increasing body mass, but also an even more important relative
increase in brain size12. According to the tethering hypothesis, the
brain’s sensory systems, acting as anchors, may have exerted con-
straining pressures during the growth of the developing ancestral
mammalian cortex13. In this way, evolutionary cortical expansion may
have led to the emergence of the S-A axis, with association cortices
distributed across the cortical mantle and untethered from sensory
hierarchies. Patterns of expansion across cortical regions along the S-A
axis are also observed across human development, with a more
markedly distributed areal expansion across frontoparietal association
regions relative to limbic and sensorimotor areas14—see also15 for a
comprehensive review of the S-A axis’ neurodevelopment. Through
the increase of overall brain size, the differential expansion of sensory
and association areas could thus be an important product of mam-
malian evolution and development, further reflecting the hierarchical
functional differentiationof these regions. In fact, this different scaling
and reorganization of regions along the S-A axis also appears to reflect
patterns of sex differences in cortical morphometry, that is, cortical
shape and size.

Morphometric differences between male and female brains have
been extensively reported, with males showing a greater absolute
brain volume6. Different measures of brain size are commonly used in
the literature (such as intracranial volume, total brain volume, and
total surface area). Although these measures highly covary and are
often used interchangeably, they quantify different morphometric
features of the brain, with sex differences in “brain size” ranging from
8% to 13% depending on the selected measure6. The size and direction
of sex effects also vary by neuroanatomical property, such as different
tissue types, brain regions, and features (including cortical thickness,
gyrification, and surface area)16. It must be noted that within-group
variability in cortical morphometry –which is typically greater in
males– is larger than between-group mean effects, meaning that
individual differences within sex are larger than group-differences
between sexes17. Although individual differences in total brain size
seem to account for most differences in relative regional volumes3,
some sex differences still remain statistically significant when the
variance explained by total brain size is taken into account7. Therefore,
there may be sex differences in the scaling of regional brain volume
that go beyond linear associations with overall brain and body size. In
fact, although local sex differences in cortical morphometry are typi-
cally small in size and vary across studies18, they have been reported in
both sensory and association regions: A meta-analysis identified
volumetric sex differences in multiple cortical regions, including the
anterior and posterior cingulate gyri, precuneus, right frontal pole,
inferior and middle frontal gyri, insular cortex, Heschl’s gyrus, and
lateral occipital cortex6. Another study found greater gray matter
volume in females in prefrontal and superior parietal cortices, whilst
males showed greater volumes in ventral occipitotemporal regions19.
These findings further depict the apparent relevance of the S-A axis as
an axis of morphometric variability between the sexes. Developmental
trajectories of anatomical change also appear regionally hetero-
geneous along the S-A axis, with higher rates of global cortical thick-
ness change found in fronto-temporal association regions and lower
rates found in sensory regions20. Morphometric cortical properties
therefore seem to not only follow patterns of variation along the S-A
axis, but also differ between the sexes. Yet, how exactly sex-specific
differences in cortical morphometry may be relevant to differences in
intrinsic brain function has not been directly explored.

Consistent with patterns of morphometric variation and sex dif-
ferences, evidence points to sex differences in intrinsic functional
connectivity (FC) in regions represented at the poles of the S-A axis5,8,9.

In fact, despite generally controversial findings on sex differences in
brain function, findings of stronger FC in females within the DMN5,21–24

and stronger FC inmaleswithin sensorimotor areas5,22,25 are consistent.
Overlapping morphometric and functional patterns of sex differences
along the S-A axis thus suggest that differentiation in functional cor-
tical organization may be somewhat orchestrated by the cortical
mantle’s morphometric properties. Indeed, the structure, size, and
shape of the cortex not only physically support functional connec-
tions, but also determine their length. Short- and long-range connec-
tions, as measured by geodesic distance (the distance separating two
regions along the cortical mantle) have in fact been found in sensory
and association regions respectively26, thus also displaying patterns of
variation along the S-A axis.With increasing distance between regions,
cortical function also appears to change more rapidly in association
regions relative to sensorimotor regions27. These patterns further
mirror patterns of microstructural cortical variability identified by
post-mortem histology26 and myelin-sensitive in vivo magnetic reso-
nance imaging (MRI)26,27. As such, intrinsic functional activity, showing
variability between the sexes and along the S-A axis, seems to be
embedded within the cortical mantle and its microstructural organi-
zation. Accumulating evidence further supports the important role
played by cortical geometric properties, including size and shape, in
sculpting functional architecture. Established findings from graph
theory suggest that a cortical functional network’s properties are lar-
gely determined by its spatial embedding, namely by the length of its
connections28. Peaks of DMN clusters on the S-A axis also appear to be
equidistantly distributed relative to primary areas10, in line with the
hypothesized untethering of association cortices from sensory hier-
archies during evolutionary expansion13. Furthermore, recent findings
suggest that the spatial organization of intrinsic cortical functional
activity is dominatedby longwave-lengths of geometric eigenmodes29.
This research builds on notions from neural field theory positing that
brain shape physically constrains brain-wide functional dynamics by
imposing boundaries on emerging functional signals30,31. In the context
of sex differences in functional cortical organization, brain size also
explains some—although not all—sex-specific variance in FC32. Toge-
ther, these findings point to possible morphometric properties that
may not only underpin cortical functional architecture, but also be at
the root of sex differences in functional cortical organization.

In the current work, we therefore investigated the extent to which
sex differences in intrinsic functional cortical organization may be
associated with differences in cortical morphometry, namely different
measures of brain size, microstructure, and the geodesic distance of
connectivity profiles. To this end, we used multimodal imaging data
(including resting state functional MRI and structural T1 and T2 images)
of the Human Connectome Project (HCP) S1200 release33, consisting of
healthy young adults self-reporting their biological sex. We began by
computing the S-A axis as ourmeasure of functional organization, given
that it reflects multimodal mechanisms bridging morphometric, struc-
tural, and functional features of cortical organization, and given that sex
differences in functional connectivity are typically found in regions
situated at the extremities of this axis, i.e., in sensory and association
regions. We then tested for sex differences along this low dimensional
axis of hierarchical organization. Next, we identified the cortical mor-
phometric properties potentially constraining the S-A axis, including
different measures of brain size (recognizing total surface area as the
most pertinent to the S-A axis), microstructural organization (a low
dimensional microstructure profile covariance (MPC) axis), and the
mean geodesic distance of connectivity profiles. We then probed
associations between patterns of sex differences in cortical morpho-
metry and patterns of sex differences in the S-A axis. Contrary to our
expectations, we do not find evidence supporting a morphometric
explanation of sex differences in functional organization, despite iden-
tifying sex differences in the morphometric properties per se. As such,
we further probed potential functional features that may intrinsically
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underpin sex differences on the S-A axis, and our findings suggest that
differences in FC profiles and network topology may be a more plau-
sible explanation of sex differences in functional organization.

Results
Sexdifferences in the S-A axis of functional cortical organization
In order to investigate whether sex differences in functional organi-
zation may be related to sex differences in cortical morphometry, we
began by constructing our measure of functional organization and
testing for related sex differences. We thus computed the S-A axis at
the individual level as our measure of functional organization in sub-
jects of the HCP S1200 release33. For this, we applied a non-linear
dimensionality reduction algorithm on FC Fisher r-to-z transformed
matrices. We only considered the top 10% of the row-wise z values,
representing each seed region’s top 10% maximally functionally con-
nected regions34,35. We used this 90% threshold for consistency with
previous studies10,36,37 and for its high test-retest reliability and
reproducibility38,39. As such, we computed the well-replicated low
dimensional axis of functional brain organization explaining the most
variance in the data (21.86%)—spanning from unimodal (sensory, here
particularly visual) regions to heteromodal (association) regions10—
and defined it as the S-A axis (Fig. 1A). Mean cortex-wide spatial pat-
terns of S-A axis loadings were overall highly correlated between the
sexes, rspin = 0.996, pspin < 0.001. Then, to test for regional effects of
sex on S-A axis loadings, we fitted a linear mixed effects model (LMM)
including fixed effects of sex, age, and total surface area, and random
nested effects of family relatedness and sibling status (seeMethods for
more information on the nested structure of the HCP data and the
statistical modeling). We identified sex differences in the S-A axis
loadings in 23.3% of cortical regions (93 out of 400 Schaefer parcels)
with small to medium effect sizes (minimum effect size of β =0.210;
maximum effect size of β =0.435), which were distributed across the
seven intrinsic functional Yeo networks40 (Fig. 1B, C). Positive stan-
dardized beta coefficients (β values), depicted in blue, represent
higher loadings in males relative to females on the S-A axis, whereas
negative β-values, depicted in red, represent higher loadings in
females relative to males. In Supplementary Fig. 1, we show that pat-
terns of within-sex variability in S-A axis loadings are similar between
males and females, with only a few regions showing statistically sig-
nificant sex differences in variance.

Morphometric correlates of the S-A axis
We then investigatedpotentialmorphometric constrains on functional
organization by probing associations between the S-A axis and differ-
entmeasures of brain size,microstructural organization, and themean
geodesic distance of connectivity profiles.

First, we tested for associations between the S-A axis loadings and
three measures of brain size commonly used in the literature, namely
intracranial volume (ICV), total cortical volume (TCV), and total sur-
face area. More specifically, ICV represents the entire volume encap-
sulated by the cranium (i.e., including cerebrospinal fluid), TCV
represents the total volume of gray and white matter within the neo-
cortex (excluding subcortical structures), and total surface area
represents the entire surface area of the neocortical mantle (see
Methods for the exact computation of these measures). Sex differ-
ences in these measures of brain size and other anthropometric
measurements (i.e., height, weight, and body mass index) are further
reported in Supplementary Table 1. For eachmeasure of brain size, we
fitted an LMM to test for regional effects of brain size on S-A axis
loadings (Supplementary Fig. 2), and we found total surface area to
have the most widespread effects amongst the three tested brain size
measures (Fig. 2D; Supplementary Fig. 2C).

Second, we computed the microstructural profile covariance
(MPC) axis of organization at the individual level, which is a low
dimensional representation of the similarity of microstructural inten-
sity profiles, defined as the T1-weighted (T1w) over T2-weighted (T2w)
tissue intensity ratio, across cortical regions and layers37,41,42. We
computed the MPC axis by conducting nonlinear dimensionality
reduction on MPC matrices34,35, which were obtained by sampling and
correlating the intracortical microstructural intensity of 12 equivolu-
metric depth profiles (see Methods). Following the same approach
used for computing the S-A axis, we selected the axis explaining the
most variance in the data (25.81%)—spanning from sensory to para-
limbic regions– defining it as the MPC axis (Fig. 2B). We specifically
selected this low-dimensional representation of microstructural
organization as it has been previously shown to covary with the low-
dimensional representation of functional organization (i.e., the S-A
axis)42. To test for whole-brain associations between the S-A and MPC
axes, we correlated the spatial maps of the axes’ mean loadings
(Fig. 2A, B) across all subjects (Fig. 2G; r =0.20, pspin = 0.037). We fur-
ther fitted an LMM to test for regional effects of MPC axis loadings on

Fig. 1 | The sensory-association (S-A) axis of functional cortical organization
and its sex differences. AMean S-A axis loadings (spanning from visual to default-
mode network regions) across sexes; B Thresholded β-map of linear mixed effect
model (LMM) results showing false discovery rate (FDR)-corrected (q <0.05) sta-
tistically significant effects of sex on S-A axis loadings,whereblue represents higher
male loadings and red represents higher female loadings; C Functional network

breakdown of cortical areas showing statistically significant FDR-corrected sex
differences in S-A axis loadings. The outer ring displays absolute proportions of
statistically significant cortical areas by functional Yeo network, the inner ring
displays absolute nested proportions by directionality of effects, where blue
represents higher male loadings and red represents higher female loadings.
β standardized beta coefficient. Source data are provided as a Source Data file.
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S-A axis loadings at the parcel level (Fig. 2E), and found small and
localized associations between the S-A and MPC axes.

Third, we computed the mean geodesic distance of con-
nectivity profiles at the individual level. The mean geodesic dis-
tance of connectivity profiles is the mean distance along the
cortical mantle between each region and its top 10% maximally
functionally connected regions. Group-level patterns (i.e., aver-
aged across all subjects; Fig. 2C) revealed shorter geodesic dis-
tances in visual and somatomotor (sensory) regions, and longer
distances in frontoparietal and DMN (association) regions. We
also tested for whole-brain associations between the S-A axis and
patterns of mean geodesic distance of connectivity profiles by
correlating their spatial maps (Fig. 2A, C) averaged across all
subjects (Fig. 2H; r = 0.76, pspin < 0.001). We also fitted an LMM to
test for regional effects of mean geodesic distance on S-A axis
loadings at the parcel level (Fig. 2F) and found strong and wide-
spread associations between the S-A axis and mean geodesic
distance of functional connectivity profiles.

Sex differences in morphometric correlates are not associated
with sex differences in the S-A axis
After establishing the corticalmorphometric correlates of the S-A axis,
we probed whether sex differences in cortical morphometry may
reflect sex differences in the S-A axis. To this effect, we first computed
sex differences in the morphometric correlates of the S-A axis using
independent LLMs. Males displayed a larger total surface area
(1947.35 ± 1542.24 cm2) relative to females (1715.07 ± 1469.42 cm2),
β = 1.21, p < .001, as reported in Supplementary Table 1. We also iden-
tified bidirectional statistically significant regional sex differences in
MPC axis loadings (Fig. 3B) as well as in the mean geodesic distance of
functional connectivity profiles (Fig. 3C).

We then tested whether the identified sex differences in cortical
morphometry may be associated with sex differences in the S-A axis.
First, we tested whether sex differences in S-A axis loadings were
moderated by total surface area. For this, we modeled an interaction
term of sex by total surface area on the S-A axis loadings (Fig. 4A) and
found no statistically significant effects across cortical regions. In

Fig. 2 | Morphometric correlates of the sensory-association (S-A) axis of func-
tional cortical organization across sexes. A Mean S-A axis loadings (spanning
from visual to default-mode regions) across sexes; BMean microstructural profile
covariance (MPC) axis loadings (spanning from sensory to paralimbic regions)
across sexes; C Mean geodesic distance of connectivity profiles across sexes;
D Thresholded β-map of linear mixed effect model (LMM) results showing false
discovery rate (FDR)-corrected statistically significant effects (q <0.05) of total
surface area on the S-A axis loadings; E Thresholded β-mapof LMMresults showing
FDR-corrected statistically significant effects of MPC axis loadings on the S-A axis
loadings; F Thresholded β-map of LMM results showing FDR-corrected statistically

significant effects of mean geodesic distance on the S-A axis loadings; G Spatial
correlation between mean patterns of S-A axis loadings and mean patterns of MPC
axis loadings (color-coded by functional Yeo network), tested by a two-sided
Spearman correlation and corrected for spatial autocorrelation, r =0.20,
pspin = 0.037. Error band displays 95% confidence interval; H Spatial correlation
between mean patterns of S-A axis loadings and mean patterns of mean geodesic
distance (color-codedbyYeonetwork), testedbya two-sided Spearmancorrelation
and corrected for spatial autocorrelation, r =0.76, pspin < 0.001. Error banddisplays
95% confidence interval. β standardized beta coefficient. Source data are provided
as a Source Data file.
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Supplementary Fig. 3A-C, we further show that this interaction effect
yields virtually the same effects (β values) when including versus
excluding height as a covariate from the LMM (r = 0.99, pspin < 0.001).
This suggests that height—being an anthropometric feature that sys-
tematically differs between the sexes—does not explain variance in the
moderation of sex effects by total surface area on the S-A axis loadings
either. We also plotted within-sex effects of total surface area on S-A
axis loadings, showing similar although slightly diverging patterns of
effects between males and females (r = 0.66, pspin = 0.002; Supple-
mentary Fig. 3D–F). However, the divergence of patterns between
sexes may not be strong or systematic enough to be interpreted as

meaningful, as underlined by the lack of statistically significant sex by
total surface area interaction effects on the S-A axis.

We then tested for spatial associations between regional sex
effects on S-A axis loadings (Fig. 3A) and regional sex effects on MPC
axis loadings (Fig. 3B) by correlating the two β-maps. Here, we found
no statistically significant association between these two patterns of
sex differences (Fig. 4D; r = −0.05, pspin = 0.398). Similarly, we tested
for spatial associations between regional sex effects on S-A axis load-
ings (Fig. 3A) and regional sex effects on themeangeodesic distance of
connectivity profiles (Fig. 3C). Again, we found no statistically sig-
nificant association between these two patterns of sex differences

Fig. 4 | Associations between sex differences in sensory-association (S-A) axis
and sex differences in cortical morphometry. A Unthresholded β-map of linear
mixed effect model (LMM) testing for sex by total surface area interaction effects
on S-A axis (there were no statistically significant sex by total surface area inter-
action effects after false discovery rate (FDR) correction (q <0.05));
B Unthresholded β-map of LMM testing for sex by MPC axis interaction effects on
S-A axis (there were no statistically significant sex by MPC axis interaction effects
after FDR correction); C Unthresholded β-map of LMM testing for sex by mean
geodesic distance interaction effects on S-A axis (35 cortical areas showed statis-
tically significant sex by mean geodesic distance interaction effects after FDR

correction and are delineated in black); D Scatterplot displaying the spatial cor-
relation between patterns of sex differences (β-maps) in S-A axis loadings and in
MPC axis loadings (color-coded by Yeo network), tested by a two-sided Spearman
correlation and corrected for spatial autocorrelation, r = −0.05, pspin = 0.398. Error
band displays 95% confidence interval; E Scatterplot displaying the spatial corre-
lation between patterns of sex differences (β-maps) in S-A axis loadings and in the
mean geodesic distance of connectivity profiles (color-coded by Yeo network),
tested by a two-sided Spearman correlation and corrected for spatial auto-
correlation, r = −0.07, pspin = 0.326. Error band displays 95% confidence interval.
β standardized beta coefficient. Source data are provided as a Source Data file.

Fig. 3 | Sex differences in the morphometric correlates of the sensory-
association (S-A) axis. A Thresholded β-map of linear mixed effect model (LMM)
results showing false discovery rate (FDR)-corrected statistically significant effects
(q <0.05) of sex on the S-A axis, where blue represents higher male loadings and
red represents higher female loadings; B Thresholded β-map of LMM results

showing FDR-corrected statistically significant effects of sex on themicrostructure
profile covariance (MPC) axis; C Thresholded β-map of LMM results showing FDR-
corrected statistically significant effects of sex on the mean geodesic distance of
connectivity profiles. β standardized beta coefficient. Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-024-51942-1

Nature Communications |         (2024) 15:7714 5

www.nature.com/naturecommunications


(Fig. 4E; r = −0.07, pspin = 0.326). These results together suggest that
sex differences in the S-A axis are not overall systematically associated
with sex differences in cortical morphometry. In addition to probing
spatial associations between sex differences in cortical morphometry
and sex differences in the S-A axis, we also modeled interaction terms
of sex by MPC axis loadings (Fig. 4B) and sex by mean geodesic dis-
tance (Fig. 4C) to test for these interaction effects on S-A axis loadings.
Here, we found no statistically significant sex by MPC axis interaction
effects, but find 35 cortical regions showing statistically significant sex
by geodesic distance interaction effects, specifically in the bilateral
medial prefrontal cortex, temporal regions, and left dorsolateral
regions (delineated in black on Fig. 4C).

As an additional sensitivity analysis, we found that including
the MPC axis and mean geodesic distance as covariates to an
LMM testing for sex effects on the S-A axis yields highly similar
regional sex effects to those reported in Fig. 1 (for which the
original LMM only included total surface area as a morpho-
metric covariate, to control for brain size), as shown by the
strong correlation of β-maps (r = 0.95, pspin < 0.001, Supple-
mentary Fig. 4A). Similarly, the association between sex effects
when including all morphometric covariates versus not includ-
ing any (i.e., also excluding total surface area) remains high
despite a small decrease in correlation strength (r = 0.80,
pspin < 0.001, Supplementary Fig. 4B). These findings further
suggest that sex differences in total surface area—representing
brain size—only explain a minor amount of variance in sex dif-
ferences in the S-A axis.

Intrinsic functional underpinnings of sex differences in the
S-A axis
Given that sex differences in the morphometric correlates of the S-A
axis did not appear to reflect sex differences in the S-A axis, we probed
potential intrinsic functional underpinnings of sex differences in the
S-A axis. Concretely, we investigated which sex differences in features
of FC may be conserved through data reduction and reflected in the
sex differences that we observe in the S-A axis loadings. For this, we
tested for associations between sex differences in the S-A axis loadings
and sex differences in three intrinsic features of FC, namely mean FC
strength, FC profiles, and network topology.

First, we computed mean FC strength at the individual level from
FC matrices, representing—for each parcel– the mean row-wise z
values of each given seed region’s top 10% maximally functionally
connected regions. We then fitted an LMM to test for local effects of
sex on mean FC strength (Fig. 5A, B), which revealed—amongst other
sex differences—greater female intrinsic FC in DMN regions and
greater male intrinsic FC in somatomotor regions. To test associations
between patterns of sex differences in the S-A axis loadings (Fig. 1B)
and in FC strength (Fig. 5A), we spatially correlated the β-maps of the
respective sex effects and did not detect a statistically significant
association between sex differences in the S-A axis and sex differences
in FC strength (Fig. 5C; r = −0.02, pspin = 0.483).

Second,we investigatedwhether sex differences in the S-A axismay
be related to sex differences in FC profiles. We defined FC profiles at the
individual level, for which we identified the top 10% maximally func-
tionally connected regions. Using the Chi-square (χ2) test of

Fig. 5 | Intrinsic sex differences in functional connectivity (FC) strength.
A Thresholded β-map of linear mixed effect model (LMM) results showing false
discovery rate (FDR)-corrected statistically significant effects (q <0.05) of sex on
mean FC strength; B Functional network breakdown of connections showing sta-
tistically significant FDR-corrected sex differences in mean FC strength. The outer
ring displays absolute proportions of statistically significant cortical areas by
functional Yeo network, the inner ring displays absolute nested proportions by

directionality of effects, where blue represents greater male FC strength and red
represents greater female FC strength; C Spatial correlation between patterns of
sex effects in S-A axis loadings and patterns of sex effects in mean FC strength
(color-coded by Yeo network), tested by a two-sided Spearman correlation and
corrected for spatial autocorrelation, r = −0.02, pspin = 0.483. Error band displays
95% confidence interval. β standardized beta coefficient. Source data are provided
as a Source Data file.
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independence, we assessed—for each possible pairwise connection
along the 400×400 matrix—sex differences in a given target region’s
odds of belonging to the top 10% maximally functionally connected
regions of a given seed region. In this way, we specifically considered the
data—at the individual level—that our data reduction algorithm has been
applied on in order to probe whether the top 10% connections made by
females and males may have differentially influenced the computation
of the S-A axis and consequently of sex differences in its loadings. We
identified the direction of these sex effects with the odds ratio (OR),
where OR< 1 indicates a given region’s greater female odds and OR> 1
indicates a given region’s greater male odds. Out of the 160,000 tested

functional connections, 2004 connections (corresponding to 1.25% of all
connections) showed statistically significant sex differences in their
odds of constituting a seed’s top 10% connections after FDR correction,
suggesting that sex differences in S-A axis loadings may in part stem
from differences in FC profiles, namely differences in which functional
connections are the strongest. For connections showing statistically
significant sex differences, we found an OR ranging from 0.00–0.64 in
the case of greater female odds (OR< 1), and an OR ranging from 1.56 to
25.36 in the case of greatermale odds (OR> 1). For illustrative purposes,
we summarized spatial patterns of sex differences in FC profiles as the
sumof connections showing sex differences per seed region (Fig. 6A), as

Fig. 6 | Intrinsic sex differences in functional connectivity (FC) profiles and
network topology. A Number of connections (per seed region) showing statisti-
cally significant false discovery rate (FDR)-corrected sex differences in their oddsof
belonging to the given seed’s top 10% connections; B Functional network break-
down of connections showing statistically significant FDR-corrected sex effects in
their odds of belonging to the given seed’s top 10% connections. The outer ring
displays absolute proportions of statistically significant cortical areas by functional
Yeo network, the inner ring displays absolute nested proportions by directionality
of effects, where blue represents higher male odds and red represents higher
female odds; C Connections between seed and target regions showing statistically
significant FDR-corrected sex differences in FC profiles (odds ratio (OR) > 1 mean-
ing that males have higher odds than females of having a target region belong to a
seed region’s top 10% connections; OR< 1 meaning that females have higher odds
thanmales of having a target region belong to a seed region’s top 10% connections;

connections are color coded by Yeo network and weighed by number of connec-
tions between the network pairs; D β values of linear mixed effect model (LMM)
results for the sex contrast in between-network (BN) dispersion for each pairwise
Yeonetworkcomparison,whereblue represents highermale BNdispersion and red
represents higher female BN dispersion (no statistically significant sex effects after
spin permutation and multiple comparisons Bonferroni correction; two-sided
pspin < 0.001); E β values of LMMresults for the sex contrast inwithin-network (WN)
dispersion for each Yeo network (displayed as white dots), plotted on null dis-
tributions ofβ values derived from 1000 spin permutations,wherepositiveβ values
represent higher male WN dispersion and negative β-values represents higher
female WN dispersion. * indicates multiple comparisons Bonferroni-corrected
(pspin < 0.004) two-sided statistical significance of the sex contrast for dispersion in
the DMN, β =0.241, pspin < 0.001. β standardized beta coefficient. Source data are
provided as a Source Data file.
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well as the overall networks involved in sex differences in FC profiles
(Fig. 6B). Figure 6C displays the connections between seed and target
regions showing statistically significant sex differences in their FC
profiles.

Finally, we investigated sex differences in network topology,
namely the organization of functional networks along the S-A axis. We
computed measures of between-network dispersion, quantifying the
pairwise distance between all networks along the S-A axis, where a
higher value indicates greater segregation of the given pair of net-
works and a lower value indicates greater integration of the given pair
of networks. Here, we computed between-network dispersion for each
possible network pair (21 pairs of Yeo networks in total) at the indivi-
dual level43. We also computed a measure of within-network
dispersion40, quantifying the spread of regions within a network
along the S-A axis, where a higher value indicates greater segregation
of the given network’s regions and a lower value indicates greater
integration of the given network’s regions. Here, we computed within-
network dispersion for all seven Yeo networks at the individual level.
LMMs did not show any statistically significant sex difference in
between-network dispersion for any of the network pairs (Fig. 6D).
However, we found greater male within-network dispersion in the
DMN, β = 0.241, pspin < 0.001 (Fig. 6E), revealing a greater spread of
regions belonging to the DMN along the S-A axis in males. The full
statistical results for the analysis of sex differences in network dis-
persion are summarized in Supplementary Table 2.

Discussion
In the current work, we investigated the extent to which sex differ-
ences in functional cortical organization may be associated with dif-
ferences in cortical morphometry, namely different measures brain
size (focusing on total surface area), microstructure, and the geodesic
distance of connectivity profiles. We identified widespread sex differ-
ences in young adult functional cortical organization as defined by the
S-A axis, which however did not appear to be systematically associated
with sex differences in total surface area,microstructural organization,
nor themean geodesic distance of connectivity profiles. This finding is
particularly striking given that the morphometric properties under
study were all per se associated with the S-A axis and differed between
sexes. We observed that sex differences in the S-A axis were instead
related to differences in FC profiles and network topology, namely
greater male dispersion within the DMN. Collectively, our findings
suggest that sex differences in functional cortical organization extend
beyond neuroanatomical sex differences pertaining to cortical
morphometry.

Considering the common use of different measures of brain size
in the literature, which yield different magnitudes of sex differences
depending on the selectedmeasure6, we tested the effects of different
measures of brain size on the S-A axis, namely ICV, TCV, and total
surface area. Here, given that total surface area had the most wide-
spread effects on functional organization, we deemed it the most
appropriatemeasure of brain size for our study and further included it
as a covariate in ourmodels throughout our analyses. The relevance of
total surface area for our study is also supported by the theoretical
assumptions motivating our research question, namely the relevance
of cortical shape and geometry in constraining brain wide functional
dynamics29–31 and thus sex differences in these features potentially
underpinning sex differences in the S-A axis. In showing the diverging
statistical effects of different measures of brain size, our findings
highlight the risk of introducing noise when including an inadequate
measure of brain size, particularly when statistically controlling for
brain size in the detection of sex effects on brain structure and
function32,44–47. The complex heterogeneity of neuroanatomical prop-
erties constituting brain size should not be undermined, also con-
sidering that morphometric features vary differently as a function of
age, whereby for example total brain volumebut not ICV is affected by

atrophy6. As such, future research on sex differences should also
carefully select themeasure of brain size that ismost conceptually and
empirically pertinent to the research question under study in order to
avoid introducing noise in the analyses.

By establishing morphometric correlates of the S-A axis in addi-
tion to total surface area, namely a microstructural axis of cortical
organization37,42,48 and the mean geodesic distance of connectivity
profiles10,48, our findings align with previous work and argue for the
rooting of functional cortical organization in cortical structure and
shape. We show a particularly strong association between the mean
geodesic distance of connectivity profiles and the S-A axis, supporting
the relevance of the cortical mantle’s shape in sculpting functional
organization. This may be a product of the cortical mantle’s evolu-
tionary expansion, where association regions are untethered from
sensory hierarchies13, and long-range connections preserve the overall
connectedness of cortical networks by facilitating the communication
between distant areas28. Furthermore, as indexed by the MPC axis,
microstructural organization appears to mildly covary with the S-A
axis, supporting to some degree the well-established idea of structural
constraints on brain function37,42,49. In our study, we obtained intensity
profiles via the ratio of T1wover T2w imaging sequences, and although
it is commonly used to measure myelin37,42,50, the T1w/T2w ratio has
been described as an acceptable qualitative proxy for myelin in gray
but not white matter51. It is indeed thought to capture unique features
of microstructural tissue that appear largely independent of diffusion-
based metrics, thus portraying a mix of neuroanatomical features
beyond pure myelin52. We therefore consider the T1w/T2w ratio—and
the resulting MPC axis—as a general measure of tissue microstructure,
which may serve as a scaffold for functional organization.

After establishing morphometric correlates of the S-A axis, we
addressed our primary aim of probing the extent to which sex differ-
ences in functional cortical organization may be reflected by sex dif-
ferences in cortical morphometry. Our findings overall suggest that
morphometric differences between the sexes are altogether not sub-
stantial contributors to sex differences in the S-A axis of functional
organization. We did not find any statistical spatial associations
between patterns of sex differences in the S-A axis and patterns of sex
differences in the MPC axis nor in the mean geodesic distance of
connectivity profiles. Although we observed slightly diverging results
when including—as opposed to excluding—total surface area as a
covariate in our model testing for sex differences in S-A axis loadings,
we did not find a statistically significant interaction between sex and
total surface area in reflecting S-A axis loadings. We also found no
statistically significant sex by MPC axis interactions but found few
statistically significant sex by mean geodesic distance interactions.
This can be understood as partly mirroring the sex differences in
functional connectivity profiles that we further explain below, given
that geodesic distancewas averagedbased on the connectivity profiles
—more specifically the top 10% functional connections—which we find
sex differences in. Altogether, the negligeable relevance of cortical
morphometry to sex differences in the S-A axis is striking given that
morphometric properties appear per se to be associated with the S-A
axis and to differ between sexes. The biological mechanisms under-
pinning different patterns of morphometric and functional sex dif-
ferences may thus be independent from one another, suggesting that
sex differences in functional cortical organizationmay extend beyond
the connectome’s supporting shape and structure.

Given that sex differences in morphometric correlates of the S-A
axis did not seem to be associated with sex differences in the S-A axis,
we probed and found potential intrinsic functional underpinnings of
sex differences in the S-A axis. Firstly, the sex differences that we
observed in the S-A axis loadings were distributed across functional
networks, notably in the DMN, frontoparietal, and ventral attention
networks. This is consistent with a previous study in youth reporting
that these association networks show greater individual variability in
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their functional topography relative to lower-order sensory networks,
whilst contributing the most to sex classification8. We also observed
sex differences in intrinsic FC strength, replicating previous widely
established findings of greater FC in females within DMN regions21–23

and inmales within somatomotor regions22,25. However, these patterns
did not spatially overlapwith patterns of sex differences in the S-A axis,
suggesting that FC strength is not a feature of intrinsic FC that is
captured by sex differences in our low dimensional representation of
functional organization. Instead, we found that sex differences in the
S-A axis were related to modest sex differences in FC profiles, which
also presented qualitative sex differences in the proportional break-
down of networks involved. The strongest functional connections (top
10% connections) of females seemed to involve the DMNmore than in
males, whereas males displayed more top connections involving the
somatomotor networks relative to females. This is also consistent with
the few regional statistically significant interaction effects of sex by
mean geodesic distance of FC profiles on S-A axis loadings. Indeed,
given that sensory and association regions are respectively known to
have primarily short- versus a mix of short- and long-range
connections26, sex differences in FC profiles involving regions in the
somatomotor network and the DMN may be related to differences in
the geodesic distances of functional connectivity profiles between
sexes. As such, our findings suggest that sex differences in the S-A axis
may be better represented by sex differences in FC profiles, i.e., the
topology of functional connections, than sex differences in FC
strength alone. Furthermore, sex differences in the configuration of
functional connections may not only underly the recurrence of sex
differences in these networks21–23,25, butmay also reflect sex differences
in network topology.

We observed greater male dispersion relative to females within
the DMN. This finding suggests that areas belonging to the DMN are
represented further apart on the S-A axis (i.e., showing less similarity
in their FC profiles) in males relative to females, which is also con-
sistent with previous findings of generally more segregated male
networks53. These network-specific topological sex differences may
be related to greater female odds of connections within the DMN,
and greater male odds of somatomotor connections with other
networks. As such, the apparent sex differences in network topology
and functional connectivity profiles—albeit small—provide a more
interpretable system-level description of the sex differences
observed in the S-A axis loadings, representing a key principle of
macroscale cortical organization. Concretely, network topology,
which represents the organization of functional communities within
and between functional networks43, may reflect brain states54—and in
our case, possible differences thereof at the group-level. Network
topology has also been associated with different cognitive features
including arousal55, awareness and consciousness56, behavior and
task performance57, and cognitive flexibility58. The balance between
integration and segregation is complex, dynamic, and necessary to
maintain the brain’smetastability59 by reaching a point of equilibrium
between global organization and local specialization49. The brain is a
highly interconnected and metabolically expensive organ, and its
organization is required to dynamically balance topological effi-
ciency and energy utilization in response to transient cognitive and
physiological demands60. Our findings of sex differences in network
topology may therefore pertain to intricate sex differences not only
in group-averaged brain states at rest, but also in global energy
expenditure, which would reflect physiological differences.

Despite the insights gained through our study, some limitations
must be acknowledged. Firstly, by focusing on self-reported biolo-
gical sex, we did not test for effects of gender or gender-related
variables on functional organization and its morphometric corre-
lates. This is relevant given that there are multiple factors con-
tributing to sex/gender differences, including both biological and
social factors. Findings may indeed appearmore nuanced if wemove

beyond the unrealistic assumption of a clear-cut sexual dimorphism
of brain structure and function61, further considering the relevance of
gender, steroid hormones, and the role of X and Y chromosomes62.
Nevertheless, we intentionally focused on the dichotomous variable
of sex to identify group-level effects, as our study aimed to investi-
gate the correspondence (i.e., shared variance) between sex differ-
ences in cortical morphometry and sex differences in cortical
functional organization, regardless of variance explained by gender.
We recognize the limitations of using a binary variable given that
differences between groups may be attributable to both sex- and
gender-based influences62. However, quantifying these influences
was beyond the scope of this study. Secondly, we focused on neo-
cortical functional organization, excluding subcortical structures
and the cerebellum despite their substantial contributions to whole
brain organization through their notable structural integration with
the cortex63. For example, the amygdala and hippocampus have
shown a variable degree of both structural6 and functional64 sex
differences. Nevertheless, our exclusive focus on the neocortex was
motivated by the relevance of using the S-A axis as our measure of
functional organization, which is commonly obtained by reducing
the dimensionality of FC matrices of cortical data10. By using the S-A
axis, our work took a system-level approach to identify sex differ-
ences embedded in a key macroscale organizational principle, going
beyond previous research on functional differences between the
sexes solely focusing on intrinsic brain function. Thirdly, the mor-
phometric properties considered in our study are not exhaustive,
overlooking the contributions of othermorphometricmeasures such
as local volumes of graymatter. The inclusion of theMPC axis37,42 and
the mean geodesic distance of connectivity profiles10,48 was however
supported by their theoretical and empirical relevance to functional
cortical organization, particularly its low dimensional embedding.
Finally, our findings are limited to sex differences in a healthy sample
and would benefit from being replicated in a more inclusive sample
that is more representative of the overall population. This would be
additionally informative considering the notable sex differences
observed in populations that would typically be excluded from
healthy samples, for example individuals with neurodevelopmental
and psychiatric disorders65. Nevertheless, the structure-function
associations that we investigated in this work are rather funda-
mental, and their essence should thus be fairly well captured in our
large (healthy) sample.

All in all, our study gives rise to a set of questions pertaining to the
mechanisms underpinning sex differences in functional cortical
organization, given that they do not appear to be rooted in cortical
morphometric differences. Our findings instead suggest that sex dif-
ferences in the S-A axis are, to some extent, intrinsically related to
differences in FC profiles and network topology. Although these sex
differences appear to be small, theymaybemeaningful for broader sex
differences in functional cortical organization, and future research
should explore factors driving males and females to form these few
distinct functional connections that are associatedwith sexdifferences
in the system-level organization of functional networks, notably of the
DMN. Recognizing the human body as a complex system of systems,
future work should also investigate other biological factors that may
contribute to functional sex differences such as genes located on sex
chromosomes19 and steroid hormones66,67. Environmental factors
should equally be considered, as theymaynot only differ on average as
a function of sex and gender, but may also differently affect brain
function across the sexes through divergent mechanisms68. An exam-
ple of this is stress,whereby sex differences in the stress responsehave
been found to contribute to sex differences in brain function and
psychopathology via epigeneticmechanisms69–71. Generally, it is crucial
for research in neuroscience to systematically test for sex differences
in brain structure and function, as well as their biological and envir-
onmental underpinnings, in order to produce more rigorous and
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representative findings, ultimately leading to a more translational
body of knowledge68.

Methods
The current study complies with ethical regulations set by The Inde-
pendent Research Ethics Committee at the Medical Faculty of the
Heinrich-Heine-University of Duesseldorf.

Participants and study design
Our analyses were conducted on the publicly available data of healthy
young adults from the Human Connectome Project (HCP) S1200
release (http://www.humanconnectome.org/)33. We selected subjects
with available functional, T1, and T2 neuroimaging data, resulting in a
final sample of 1000 individuals (536 females) with a mean age of
28.73 ± 3.71 years, used for all analyses. The sample included 284
monozygotic twins (MZ), 184 dizygotic twins (DZ), 443 non-twin sib-
lings, and 89 unrelated individuals, and the sociodemographic break-
down of the participants is additionally reported in Supplementary
Table 3. Subjects were all born in Missouri but recruited in an attempt
to broadly reflect the racial and ethnic composition of the United
States population. Recruitment efforts aimed to yield a subject pool
capturing awide range of variability—in socioeconomic and behavioral
terms—in order to be representative of the general healthy population.
The term “healthy” was thus broadly defined. Individuals with docu-
mented neurodevelopmental and psychiatric disorders, or reporting
physiological illnesses such as high blood pressure or diabetes were
excluded from the HCP study recruitment protocol, but not indivi-
duals who reported smoking, being overweight, or a history of
recreational drug use or heavy drinking (if they had not experienced
severe symptoms). Informed consent was obtained for all study sub-
jects and recruitment procedures were approved by the Washington
University institutional review board.More detailed information about
the HCP study design and recruitment procedure is available
elsewhere33,72. Despite the use of the term gender in the HCP Data
Dictionary, we use the term sex in this article given that the HCP study
collected self-reported information onbiological sex insteadof gender
identification, as reported elsewhere73. We have not used genetic
information to verify the self-reported sex.

Structural MRI acquisition and preprocessing
The HCP’s MRI data was acquired on a customized 3T Siemens Skyra
ConnectomeScanner with a 32-channel head coil at Washington Uni-
versity across four scanning sessions held over two days. Structural
MRI images were acquired on the same day via high resolution T1-
weighted (T1w) and T2-weighted (T2w) sequences. Two separate T1w
images were acquired and averaged, with identical scanning para-
meters using a 3D MPRAGE sequence (0.7mm isovoxels, FOV = 224
mm, matrix = 320 × 320mm, 256 sagittal slices; TR = 2400ms, TE =
2.14ms, TI = 1000ms, flip angle = 8°, BW= 210Hz per pixel, ES = 7.6
ms). Two separate T2w images were acquired and averaged, with
identical scanning parameters using a variable flip angle turbo spin-
echo (3D T2-SPACE) sequence, with the same isotropic resolution,
matrix, FOV, and slices as for the T1w sequence (TR= 3200ms, TE =
565ms, BW= 744Hz per pixel, total turbo factor = 314). The pre-
processing steps included co-registering the T1w and T2w images, bias
field (B1) correction, registration to MNI space, segmentation, and
surface reconstruction. See refs. 33,72,74 for more detail on the HCP’s
MRI protocols and the FreeSurfer segmentation pipeline.

Functional MRI (fMRI) acquisition and preprocessing
The HCP’s fMRI data was collected after the structural sequences and
following the HCP’s minimal processing pipeline, as described above.
A total of 1 h of resting-state functional data was collected across four
identical 15min scanning sessions, equally split over two days (LR1,
RL1, LR2, RL2), with a gradient echo EPI sequence at a resolution of

2mm isotropic (FOV = 208 × 180mm, matrix = 104 × 90mm, 72 slices
covering the whole brain, TR = 720ms, TE = 33ms, multiband factor of
8, FA = 52°). Themultimodal surfacematching algorithm (MSMAll) was
used to co-register the data to the HCP template 32k_LR surface space,
consisting of 32,492 nodes per hemisphere (59,412 nodes excluding
the medial wall). A more detailed description of the resting state fMRI
data acquisition and analysis protocol is available elsewhere74,75.

Functional connectivity (FC) and the sensory-association (S-A)
axis of functional organization
Throughout this work, we used the Schaefer 400 parcellation (clus-
tered into 7 networks: visual, somatomotor, dorsal attention, ventral
attention, limbic, frontoparietal, DMN40). This widely used
functionally-derived parcellation scheme was originally obtained via a
gradient-weighted Markov Random Field model integrating local gra-
dient and global similarity approaches76. The vertex-wise functional
timeseries were therefore averaged within the Schaefer 400 cortical
regions. FCmatrices (400 × 400)were then computed at the individual
level—per scanning session—by correlating cortical timeseries in a
pairwise manner using the Pearson product moment. We normalized
the correlation coefficients using Fisher’s z-transformation. Final FC
matrices were obtained by averaging each subject’s matrices across
their four scanning sessions. From these FC matrices and for each
subject, we computed the S-A axis of functional organization, as
described below.

We conducted data reduction on the FC matrices to yield mac-
roscale gradients of functional organization10. For this, we used diffu-
sion map embedding, a nonlinear manifold learning algorithm that
reduces complex, high-dimensional structures of data (in our case
affinity matrices) to low-dimensional representations combining geo-
metry with the probability distribution of data points34. Thus, cortical
regions that are strongly interconnected (i.e., whose timeseries show
high correlations) are represented closer together in the resulting low
dimensional manifold of FC data, whereas parcels with low covariance
are represented farther apart, as indexed by the cortical regions’ gra-
dient loadings. To this end, we used the BrainSpace Python toolbox35

to compute ten gradients with the following parameters: 90% thresh-
old (i.e., only considering the top 10% row-wise z values of FCmatrices,
representing each seed region’s top 10% maximally functionally con-
nected regions), α =0.5 (α controls whether the geometry of the set is
reflected in the low-dimensional embedding— i.e., the influence of the
sampling points density on the manifold, where α =0 (maximal influ-
ence) and α = 1 (no influence)), and t =0 (t controls the scale of
eigenvalues). These parameters were selected for consistency with
previous studies and represent choices that are recommended to
retain global relations between datapoints in the embedded space
whilst being relatively robust to noise10,42. To confirm the robustness of
the S-A axis computed at the 90% threshold, we further show with a
sensitivity analysis that the mean S-A axis computed at the 90%
threshold shows high correlations with mean S-A axes computed at
different thresholds (from 10% to 90%, in steps of 10%), with r values
ranging from 0.84 to 0.93 (see Supplementary Fig. 5). In order to
increase comparability for further between-subject analyses, Pro-
crustes alignment was used to align individual gradients to mean
gradients. Mean gradients were computed by applying diffusion map
embedding—with the same parameters listed above—to the mean FC
matrix (i.e., FC matrices averaged across all subjects). The computa-
tion of these FC gradients was carried out independently per hemi-
sphere (i.e., considering the top 10% row-wise z values of only half of
the FC matrices, shaped 200 × 200) and the gradient loadings result-
ing from each hemisphere were subsequently concatenated. This
decision was made for consistency and comparability reasons within
our study, so that the top 10% functional connections selected for data
reduction corresponded to those considered in the calculation of the
mean geodesic distance of connectivity profiles—which were only
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computed per hemisphere– as described further below). We verified
and confirmed the stability FC gradients when computing them per
hemisphere versus at the whole brain level, as shown by the spatial
correlation of mean gradient loadings (r = 0.98, pspin < 0.001). Finally,
we took the well-replicated principal gradient explaining the most
variance in the data and spanning from visual to DMN regions10, which
we labeled the S-A axis and used to represent functional organization
for subsequent analyses.

We also computed, for each subject, mean FC strength at the
parcel level in a seed-wise fashion, by averaging the row-wise z values
of each seed region’s top 10% maximally functionally connected
regions—again per hemisphere—and subsequently concatenated the
hemispheric mean FC strength values to reconstruct whole brain data.

Cortical microstructure and microstructural profile
covariance (MPC)
Microstructural properties—including myelin and cellular character-
istics—show depth-dependent variation along cortical columns, as
reported by histology42,77,78 as well as in vivo and post mortem
neuroimaging37,41,42,78, which illustrate a cortical hierarchy11. Similar to
previous work37, we quantified cortical microstructure, or “micro-
structural profile intensity” (MPI), using the myelin-sensitive MRI
contrast obtained from the T1w/T2w ratio from the HCP minimal
processing pipeline described above74 (a reliability check is reported in
the Supplementary Fig. 6). The T1w/T2w ratio uses the T2w image to
correct for inhomogeneities in the T1w image50. Then, we followed the
previously described protocol37,41,42 to compute our measurement of
MPC, which reflects the variation of MPI, across cortical depths. In
short, we generated 14 equivolumetric surfaces within the inner and
outer cortical surfaces, then excluded the inner- and outer-most sur-
faces, thus remaining with 12 surfaces representing cortical layers.
Surface generation was based on a model compensating for cortical
folding by altering the pairwise Euclidean distance (ρ) of intracortical
surfaces throughout the cortex and thus preserving fractional volume
between the surfaces. For each surface, ρ was calculated as defined in
Eq. 1.

ρ =
1

Aout � Ain
� �Ain +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αA2
out + 1� αð ÞA2

in

q

� �

ð1Þ

for which α denotes a fraction of the total volume of the segment that
the surface accounts for, while Aout and Ain respectively denote the
surface areas of the outer and inner cortical surfaces.

Across the whole cortex and from the outer to the inner surfaces,
we systematically sampledMPI values layer-wise for each of the 64,984
vertices of the HCP template 32k_LR surface space, which we then
averaged within each of the 400 Schaefer cortical areas, per layer.
Following a previously described protocol41, we constructed subject
level 400 × 400matrices using pairwise Pearson partial correlation on
the MPI profiles of cortical parcels (i.e., correlating the MPI values
across 12 layers between parcels), controlling for overall mean cortical
MPI, followed by log transformation. We then used these matrices to
compute MPC gradients by following the same procedure and using
the same toolbox and parameters as for computing the FC
gradients34,35, as described above and previously done37,41,42. For con-
sistency and comparability with the computation of FC gradients and
mean geodesic distance of connectivity profiles, we also computed
MPC gradients independently per hemisphere and subsequently con-
catenated the gradient loadings resulting from each hemisphere. We
verified and confirmed the stability MPC gradients when computing
them per hemisphere versus at the whole brain level, as shown by the
spatial correlation of mean gradient loadings (r =0.99, pspin < 0.001).
We also selected the principal gradient of MPC explaining the most
variance in the data and spanning from sensory to paralimbic regions,

which we labeled the MPC axis and used to represent microstructural
organization in subsequent analyses.

Measures of brain size
In our analyses we included different measures of brain size typically
used in the literature, including intracranial volume (ICV), total cortical
volume (TCV), and total surface area. For ICV, we used the FreeSurfer
output measure IntraCranialVol, which is an estimate of ICV based on
the Talairach transform. We computed our own measure of TCV by
summing the volumes of the TotCort_GM_Vol and Tot_WM_Vol Free-
Surfer output measures, which we considered relevant to our study’s
focus on cortical functional organization (thus excluding the volumes
of subcortical structures).We computed total surface area by using the
FreeSurfer mri_surf2surf tool to resample cortical gray matter surface
for each subject.

Geodesic distance of connectivity profiles
Geodesic distances, representing the shortest distance between two
vertices along the folded cortical mantle’s curvature, were computed
using the Micapipe toolbox79, and following the previously described
protocol80. In short, geodesic distance matrices were computed for
each subject along their native cortical midsurface. The first step
consisted in defining a centroid vertex for each cortical parcel, iden-
tified as the vertex having the shortest summed Euclidean distance
from all other vertices within the parcel. Then, Dijkstra’s algorithm81

wasused to compute geodesic distances between the centroid vertices
and all other vertices on the on the native midusrface mesh. The
vertex-wise geodesic distance values were then averaged within each
parcel to form the geodesic distance matrices. From these individual
matrices, we finally averaged—parcel-wise—the geodesic distance
values of each seed cortical region’s top 10% maximally functionally
connected regions per hemisphere, thus obtaining for each subject the
mean geodesic distance of functional connectivity profiles by region.

Statistical analysis
Given that theHCP sample includes different levels of kinship, we used
linear mixed effects models (LMMs) to account for sibling status (MZ,
DZ, non-twin siblings) and family relatedness. In fact, all LMMs men-
tioned in this work consistently included sex, age, and total surface
area as covariates (unless otherwise mentioned), and controlled for
random nested effects of family relatedness and sibling status. In
addition, effects on cortical data obtained via LMMs underwent false
discovery rate (FDR) correction (q <0.05), thus correcting formultiple
comparisons across the 400 Schaefer cortical regions. Throughout
this work, we also tested for associations in brain-wide patterns dis-
played in the form of cortical maps, for which we used Spearman-rank
correlation followed by spin-permutation tests to control for spatial
autocorrelation82. All statistical tests were two-sided.

After computing the S-A axis of functional cortical organization,
we tested for sex differences in the S-A axis loadings with an LMM.
Then, we investigated which measure of brain size (out of ICV, TCV,
and total surface area) had the largest effects on the S-A axis loadings
using separate LMMs (respectively only including ICV, TCV, or total
surface area as a covariate, in addition to sex, age and the random
nested effect of family relatedness and sibling status). The reason
underlyingour decision to systematically include total surfacearea as a
covariate in all our LMMs (as the measure of brain size) is that it
showed themostwidespreadeffects on the S-A axis loadings out of the
three testedmeasures. Then, we investigated associations between the
S-A axis and corticalmorphometry, namely theMPC axis and themean
geodesic distance of connectivity profiles, using both LMMs and
Spearman-rank spatial correlations of cortical maps.

To probewhether sex differences in corticalmorphometrymay be
associated with sex differences in the S-A axis, we tested whether sex
differences in the S-A axis loadings were moderated by total surface
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area by modeling an additional interaction term of sex by total surface
area on the S-A axis loadings within the original LMM. We also tested
for sex differences in the MPC axis and in the mean geodesic distance
of connectivity profiles, and conducted Spearman-rank correlations of
cortical β-maps for the sex contrast in the S-A axis and in the mor-
phometric measures. We also modeled two additional interaction
terms within the original LMMs of sex by MPC axis loadings and sex by
mean geodesic distance to show their effects on the S-A axis loadings.
Finally, we conducted sensitivity analyses to test for sex effects on the
S-A axis yielded by an LMM including all morphometric measures as
covariates (i.e., including the MPC axis and themean geodesic distance
of connectivity profiles, in addition to total surface area), as well as an
LMMnot including anymorphometric measures as covariates (i.e., also
excluding total surface area). We then tested the similarity of both
these sex effects with the original sex effects on the S-A axis with a
Spearman-rank spatial correlation of the cortical β-maps.

In order to probe the potential intrinsic functional underpinnings
of sex differences in the S-A axis, we tested for sex differences in FC
strength (also with an LMM), as well as sex differences in FC profiles,
i.e., the presence of sex differences in the top 10% maximally func-
tionally connected regions used to compute the S-A axis. To this end,
we built 400 × 400 binary matrices at the subject level—based on the
subjects’ individual FC matrix z values—in which we marked in a seed-
wise fashion (along the matrix rows) whether the given cortical region
(along the matrix column) belongs to the given seed’s top 10% maxi-
mally functionally connected regions,where 1 indicated that the parcel
belongs to the seed’s top 10% maximally functionally connected
regions and 0 indicated that the parcel does not belong to the seed’s
top 10% maximally functionally connected regions. We then summed
the binary matrices separately within sexes in order to fill 160,000
contingencymatrices—one for each cell (i.e., functional connection) of
the 400 × 400 FC matrix—denoting the number of males and females
for which a given cortical region belongs or does not belong to the
seed region’s top 10% maximally functionally connected regions (see
Table 1 for a visual representation of the contingency matrix
structure).

We then conducted the Chi-square (χ2) test of independence
(degrees of freedom= 1) on each contingency table to test for sex
differences in the odds of each parcel of belonging to the top 10%
maximally functionally connected regions of each seed region. Given
the large number of tests conducted here (400 × 400= 160,000), we
controlled for multiple comparisons using FDR correction. We quan-
tified the size of these sex effects with the odds ratio (OR), calculated
as defined in Eq. 2.

OR=
Cm=NCm
Cf=NCf

ð2Þ

whereOR > 1 indicates greatermale odds—andOR< 1 indicates greater
female odds—of a given region of belonging to a given seed’s top 10%
maximally functionally connected regions.

We also tested for sex differences in network topology, i.e., how
nodes are physically organized in networks and how networks are
physically organized along the S-A axis. For this, we computed two
measures of network dispersion: between- and within-network

dispersion. Between-network dispersion is defined as the Euclidean
distance between a pair of network centroids, where a higher value
indicates that networks are more segregated from one another along
the S-A axis. Within-network dispersion is defined as the sum squared
Euclideandistance of networknodes (i.e., S-A axis regional loadings) to
thenetworkcentroid,where a higher value indicateswider distribution
and segregation of a given network’s nodes along the S-A axis. At the
individual level, we thus computed between-network dispersion
between all networks in a pairwise fashion (21 pairs), and within-
network dispersion for all 7 networks, by defining network centroids as
the median of the S-A axis loadings of all parcels belonging to a given
network, following a previously described method43. Then, we com-
puted sex differences in each of the 21 between-network dispersion
metrics and 7within-networkdispersionmetrics using LMMs. For each
model, we computed a null distribution of β coefficients for sex dif-
ferences using 1000 spherical rotations of the Schaefer parcellation
scheme in order to shuffle the network labels82, against which we
computed our p-value to determine statistical significance. We then
assed pspinvalues against Bonferroni-corrected two-tailed α-levels of
0.001 (0.025/21) and 0.004 (0.025/7) for between-network andwithin-
network dispersion sex contrasts, respectively.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions of the paper are present in
the paper and in the Supplementary Materials, and are further avail-
able upon request. We obtained all data from the open-access Human
Connectome Project (HCP) S1200 young adult sample. The HCP pro-
cessed data are publicly available and can be directly downloaded at
https://db.humanconnectome.org. Source data are provided with
this paper.

Code availability
Analyses were conducted in Python and R: The code used in this
manuscript is available at https://github.com/biancaserio/sex_diff_
gradients (v1; https://zenodo.org/doi/10.5281/zenodo.12785462). The
code and tutorials for functional gradient decomposition and to gen-
erate geodesic distances can further be found at https://brainspace.
readthedocs.io/en/latest/index.html and https://micapipe.readthedocs.
io/en/latest/ respectively.
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