001     1030857
005     20250203133205.0
024 7 _ |a 10.1038/s41467-024-48973-z
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05466
|2 datacite_doi
024 7 _ |a 38844776
|2 pmid
024 7 _ |a WOS:001240998200026
|2 WOS
037 _ _ |a FZJ-2024-05466
082 _ _ |a 500
100 1 _ |a Zhou, Hangyu
|0 P:(DE-Juel1)190965
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Kagomerization of transition metal monolayers induced by two-dimensional hexagonal boron nitride
260 _ _ |a [London]
|c 2024
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1729170813_25656
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The kagome lattice is an exciting solid state physics platform for the emergence of nontrivial quantum states driven by electronic correlations: topological effects, unconventional superconductivity, charge and spin density waves, and unusual magnetic states such as quantum spin liquids. While kagome lattices have been realized in complex multi-atomic bulk compounds, here we demonstrate from first-principles a process that we dub kagomerization, in which we fabricate a two-dimensional kagome lattice in monolayers of transition metals utilizing an hexagonal boron nitride (h-BN) overlayer. Surprisingly, h-BN induces a large rearrangement of the transition metal atoms supported on a fcc(111) heavy-metal surface. This reconstruction is found to be rather generic for this type of heterostructures and has a profound impact on the underlying magnetic properties, ultimately stabilizing various topological magnetic solitons such as skyrmions and bimerons. Our findings call for a reconsideration of h-BN as merely a passive capping layer, showing its potential for not only reconstructing the atomic structure of the underlying material, e.g. through the kagomerization of magnetic films, but also enabling electronic and magnetic phases that are highly sought for the next generation of device technologies.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)443405092 - Konstruktion von 2D van der Waals Magnetismus auf der Nanoskala (443405092)
|0 G:(GEPRIS)443405092
|c 443405092
|x 1
536 _ _ |a DFG project G:(GEPRIS)462676712 - iAFMskyrmionen- Intrinsische antiferromagnetische Skyrmionen aus ersten Prinzipien: Von der Stabilisierung, der Interaktion mit Defekten bis zum effizienten Nachweis (462676712)
|0 G:(GEPRIS)462676712
|c 462676712
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a dos Santos Dias, Manuel
|0 P:(DE-Juel1)145395
|b 1
|u fzj
700 1 _ |a Zhang, Youguang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhao, Weisheng
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Lounis, Samir
|0 P:(DE-Juel1)130805
|b 4
|e Corresponding author
773 _ _ |a 10.1038/s41467-024-48973-z
|g Vol. 15, no. 1, p. 4854
|0 PERI:(DE-600)2553671-0
|n 1
|p 4854
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1030857/files/s41467-024-48973-z.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1030857/files/s41467-024-48973-z.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1030857/files/s41467-024-48973-z.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1030857/files/s41467-024-48973-z.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1030857/files/s41467-024-48973-z.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1030857
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190965
910 1 _ |a School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)190965
910 1 _ |a Fert Beijing Institute, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)190965
910 1 _ |a Shenyuan Honors College, Beihang University, Beijing, 100191, China
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)190965
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145395
910 1 _ |a Scientific Computing Department, STFC Daresbury Laboratory, Warrington, WA4 4AD, United Kingdom
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)145395
910 1 _ |a Faculty of Physics, University of Duisburg-Essen and CENIDE, 47053, Duisburg, Germany
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)145395
910 1 _ |a School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Fert Beijing Institute, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130805
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 p c |a DEAL: Springer Nature 2020
|0 PC:(DE-HGF)0113
|2 APC
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21