001     1030872
005     20250203133205.0
024 7 _ |a 10.3390/ijms25168617
|2 doi
024 7 _ |a 1422-0067
|2 ISSN
024 7 _ |a 1661-6596
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05481
|2 datacite_doi
024 7 _ |a 39201305
|2 pmid
024 7 _ |a WOS:001305656000001
|2 WOS
037 _ _ |a FZJ-2024-05481
082 _ _ |a 540
100 1 _ |a Endepols, Heike
|0 P:(DE-Juel1)180330
|b 0
|e Corresponding author
245 _ _ |a Cerebellar Metabolic Connectivity during Treadmill Walking before and after Unilateral Dopamine Depletion in Rats
260 _ _ |a Basel
|c 2024
|b Molecular Diversity Preservation International
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738136294_6366
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Compensatory changes in brain connectivity keep motor symptoms mild in prodromalParkinson’s disease. Studying compensation in patients is hampered by the steady progression ofthe disease and a lack of individual baseline controls. Furthermore, combining fMRI with walkingis intricate. We therefore used a seed-based metabolic connectivity analysis based on 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake in a unilateral 6-OHDA rat model. At baseline and in thechronic phase 6–7 months after lesion, rats received an intraperitoneal injection of [18F]FDG andspent 50 min walking on a horizontal treadmill, followed by a brain PET-scan under anesthesia. Highactivity was found in the cerebellar anterior vermis in both conditions. At baseline, the anterior vermisshowed hardly any stable connections to the rest of the brain. The (future) ipsilesional cerebellarhemisphere was not particularly active during walking but was extensively connected to many brainareas. After unilateral dopamine depletion, rats still walked normally without obvious impairments.The ipsilesional cerebellar hemisphere increased its activity, but narrowed its connections down tothe vestibulocerebellum, probably aiding lateral stability. The anterior vermis established a networkinvolving the motor cortex, hippocampus and thalamus. Adding those regions to the vermis networkof (previously) automatic control of locomotion suggests that after unilateral dopamine depletionconsiderable conscious and cognitive effort has to be provided to achieve stable walking.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Apetz, Nadine
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Vieth, Lukas
|0 P:(DE-Juel1)184843
|b 2
|u fzj
700 1 _ |a Lesser, Christoph
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schulte-Holtey, Léon
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 5
|e Corresponding author
700 1 _ |a Drzezga, Alexander
|0 P:(DE-Juel1)177611
|b 6
|u fzj
773 _ _ |a 10.3390/ijms25168617
|g Vol. 25, no. 16, p. 8617 -
|0 PERI:(DE-600)2019364-6
|n 16
|p 8617
|t International journal of molecular sciences
|v 25
|y 2024
|x 1422-0067
856 4 _ |u https://juser.fz-juelich.de/record/1030872/files/1200205998_FZJ-2024-05179__Invoice_ijms-3093915.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1030872/files/1200205998_FZJ-2024-05179__Invoice_ijms-3093915.gif?subformat=icon
|x icon
856 4 _ |u https://juser.fz-juelich.de/record/1030872/files/1200205998_FZJ-2024-05179__Invoice_ijms-3093915.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/1030872/files/1200205998_FZJ-2024-05179__Invoice_ijms-3093915.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/1030872/files/1200205998_FZJ-2024-05179__Invoice_ijms-3093915.jpg?subformat=icon-640
|x icon-640
856 4 _ |u https://juser.fz-juelich.de/record/1030872/files/ijms-25-08617-v2.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1030872/files/ijms-25-08617-v2.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1030872/files/ijms-25-08617-v2.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1030872/files/ijms-25-08617-v2.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1030872/files/ijms-25-08617-v2.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1030872
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180330
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)184843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)177611
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 1
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 0
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21