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1 Introduction

The nucleons and their properties are of fundamental interest in nuclear and particle physics
as they are the basic components of nuclei, which constitute common matter. The elec-
tromagnetic form factors (EMFFs) of the proton and the neutron play an important role
in understanding the properties of the internal structure of nucleons as well as strong in-
teractions, see, e.g., refs. [1, 2] for reviews on recent progress. Indeed, the amplitudes of
eN → eN , e+e− → N̄N and N̄N → e+e− can be written in terms of the electric and
magnetic form factors: GE and GM, i.e., the so-called EMFFs. The EMFFs in the timelike
region have recently received considerable attention from the physics community [3–12]. They
can be studied through the annihilation of positron-electron into antinucleon-nucleon pairs
and/or the inverse processes.

In the early stages, in the 1970s, the reaction e+e− → p̄p was measured at center-of-mass
energies Ecm = 2.1GeV and the EMFFs of the proton were extracted in an experiment at
ADONE [13]. Subsequently, several measurements of the proton EMFFs were performed
by other experimental groups, see, e.g., refs. [14–19]. The study of proton EMFFs also
benefitted from measurements on p̄p annihilating into e+e− pairs [20]. On the other hand,
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measurements of neutron EMFFs are rather sparse. The Fenice collaboration studied the
EMFFs in the process e+e− → n̄n [17, 19]. Although those measurements launched a
new era of this interesting field, they had limited statistics and a limited energy range.
Fortunately, the situation has improved significantly in the 21st century. The BaBar, CMD-3,
BESIII, and SND collaborations have performed various measurements of the EMFFs, and
the uncertainties are now much smaller. See e.g., refs. [21–29] for the proton EMFFs, and
refs. [30–34] for those of the neutron. Interestingly, the improved measurements suggested an
apparent oscillatory behavior of the proton EMFFs. This aspect was first conjectured based
on the measurements of the BaBar collaboration [21, 22] and reported in ref. [3]. The latest
measurements of e+e− → p̄p [29] and e+e− → n̄n [32] by the BESIII collaboration established
that also the neutron EMFFs show an oscillatory behavior. Moreover, and intriguingly, a
phase difference in the oscillations of the EMFFs between the proton and the neutron has
been found in the energy range of Ecm ∈ [2.00, 3.08]GeV [32]. This attracted further interest
in timelike EMFFs, as it could be an important clue to reveal the internal structure and the
interactions of nucleons. A natural question following the experimental result is whether
this phenomenon holds true close to the threshold as well. Specifically, since the oscillation
is observed in the effective EMFFs, does the phase difference still exists in the individual
EMFFs of the nucleons? To answer these questions, one needs to study the EMFFs in the low
energy region, that is, Ecm ∈ [2MN , 2.2 GeV], where MN is the nucleon mass, and extract
the individual EMFFs. This is the primary goal of this paper.

The situation around the N̄N threshold is still not clear, as it is not easy for experimental-
ists to perform measurements with sufficient statistics in this energy region. Nevertheless, the
CMD-3 and SND collaborations published pertinent data on the cross sections for e+e− → p̄p

and e+e− → n̄n, respectively [24, 33]. Their measurements, though still afflicted by large
errors, are helpful for further analysis of the EMFFs. On the theoretical side, investigations
in the near-threshold region require the inclusion of the N̄N interaction in the final state in
order to be conclusive. Indeed, it has been shown in several studies that the N̄N final-state
interaction (FSI) has non-negligible effects around the threshold.1 Since chiral effective field
theory (χEFT) is successful in describing the interaction between baryons in the low-energy
region [38, 39], we will adopt this framework to generate an appropriate hadronic N̄N

scattering amplitude. Similar to what is done in our previous works and also by some other
groups, we apply a two-step procedure to evaluate the reaction amplitude for e+e− → N̄N .
The hadronic N̄N scattering amplitude is obtained by solving the Lippmann-Schwinger (LS)
equation for an interaction potential derived within SU(3) χEFT. Then, the amplitude of
e+e− annihilating into N̄N pairs is computed based on the distorted wave Born approxima-
tion (DWBA) [40–43]. This two-step procedure, combining χEFT and DWBA, as discussed
above, has already been proven to be successful in studying the EMFFs, not only for nucleons
but also for other baryons. See e.g., applications in the reactions e+e− ↔ N̄N [10, 40],
e+e− → Λ̄Λ [44, 45], e+e− → Σ+Σ̄−,. . . [42, 46], e+e− → Λ+

c Λ̄−
c [41] and so on.

This paper is organized as follows: in section 2, we describe the calculation of the
amplitude and cross section of the processes of e+e− → p̄p and e+e− → n̄n, with the FSI in
the N̄N system taken into account. In section 3, we present our fit to the phase shifts of

1For further discussions of FSI effects we refer to refs. [35–37].
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the coupled 3S1 − 3D1 partial wave in the isospin basis and the experimental data sets for
N̄N cross sections and differential cross sections, in which the low-energy constants (LECs)
of χEFT as well as other parameters are fixed. Then, the individual EMFFs of the proton
and the neutron from the threshold up to 2.2GeV are extracted, and the underlying physical
interpretation is discussed. Finally, a brief summary is given in section 4. Details of the
derivation of the N̄N interaction potential from SU(3) χEFT and various technicalities about
loop integrals are compiled in appendices.

2 Theoretical framework

2.1 Formulas for the amplitude of e+e− → N̄N and the EMFFs

In the assumption of one photon exchange, i.e., the electron-positron will annihilate into a
virtual photon before hadronization, the differential cross section can be calculated from the
helicity amplitudes ϕi for the scattering of two spin-1/2 particles [40]

dσ
dΩ = 1

2sβ C(s)
8∑

i=1
|ϕi|2 , (2.1)

where β is the phase space factor, β = kN/ke with kN , ke the three-momenta of the nucleon
and electron in the center-of-mass frame (c.m.f.). The momenta are related to the total
energy by

√
s = 2

√
M2

N + k2
N = 2

√
m2

e + k2
e , with me(MN ) the electron (nucleon) mass. C(s)

is the S-wave Sommerfeld-Gamow factor, C(y) = y/(1 − e−y) with y = παMN/kN , where
α = 1/137.036 is the fine-structure constant. For neutrons C(y) ≡ 1. The ϕi are related
to the angular momentum helicity states

⟨λ′1λ′2|F |λ1λ2⟩ =
∑

J

(2J + 1)⟨λ′1λ′2|F J |λ1λ2⟩dJ
λλ′(θ) , (2.2)

with λ
(′)
1,2 = ±1

2 , λ(′) = λ
(′)
1 − λ

(′)
2 and dJ

λλ′(θ) the Wigner d-functions. To implement the
information of the partial waves from χEFT, one needs to specify the quantum numbers.
The transformation of the amplitudes from the helicity basis |JMλ

(′)
1 λ

(′)
2 ⟩ to the usual partial

wave representation, |JMLS⟩, is given by [47, 48],

⟨λ′1λ′2|F J |λ1λ2⟩ =
∑

LS,L′S′

√
(2L+ 1)(2L′ + 1)

2J + 1 ⟨LS0λ|Jλ⟩⟨Jλ′|L′S′0λ′⟩

× ⟨s1s2λ1,−λ2|Sλ⟩⟨S′λ′|s′1s′2λ′1,−λ′2⟩⟨L′S′J |F |LSJ⟩ . (2.3)

In our analysis of e+e− → N̄N the situation is simple because one only needs to deal with
the 3S1 − 3D1 partial waves.2 The helicity amplitudes are decomposed into [40, 49, 50]

ϕ1 = ⟨++ |F |++⟩ = cos θ
2 [F00 −

√
2(F02 + F20) + 2F22] = −2meMNα

s
cos θGN

E ,

ϕ2 = ⟨++ |F | − −⟩ = ϕ1 ,

ϕ3 = ⟨+− |F |+−⟩ = 1 + cos θ
4 [F22 + 2F00 +

√
2(F02 + F20)] = −α2 (1 + cos θ)GN

M ,

2The amplitude written in eq. (2.4) is valid for one-photon exchange. Higher order terms of the electromag-
netic vertex are neglected. Conservation of parity, charge conjugation, and time reversal invariance have been
taken into account.
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Figure 1. Illustrative diagram of the process e+e− → N̄N .

ϕ4 = ⟨+− |F | −+⟩ = 1− cos θ
4 [F22 + 2F00 +

√
2(F02 + F20)] = −α2 (1− cos θ)GN

M ,

ϕ5 = ⟨++ |F |+−⟩ = −sin θ
2
√
2
[F02 − 2F20 −

√
2(F22 − F00)] =

MNα√
s

sin θGN
E ,

ϕ6 = ⟨+− |F |++⟩ = sin θ
2
√
2
[F20 − 2F02 −

√
2(F22 − F00)] = −meα√

s
sin θGN

M ,

ϕ7 = ⟨++ |F | −+⟩ = −ϕ5 ,

ϕ8 = ⟨−+ |F |++⟩ = −ϕ6 . (2.4)

Here, FL′L is the partial wave amplitude of the process e+e− → N̄N , as shown in figure 1. It
can be written as a product of two factors: one is the e+e−γ vertex, and the other is the
N̄Nγ effective vertex. Accordingly, the amplitude factorizes into

F N̄N,e+e−

LL′ = −4α
9 f

N̄N
L f e+e−

L′ ,

with

f N̄N
0 = GN

M + MN√
s
GN

E , f e+e−
0 = 1 + me√

s
,

f N̄N
2 = 1√

2

(
GN

M − 2MN√
s
GN

E

)
, f e+e−

2 = 1√
2

(
1− 2me√

s

)
. (2.5)

Obviously, one has GN
E = GN

M at the N̄N thresholds which follows from the definition of
the Sachs form factors. Once the production amplitude has been obtained, one can obtain
the individual EMFFs by eq. (2.5).

2.2 Implementation of the N̄N FSI

As has been mentioned in the context of eq. (2.5), the vertex N̄Nγ should include the FSI in
the N̄N system. In the present work this is realized within the DWBA [40, 41]:

f N̄N
L (kN ;EkN

) = f N̄N,0
L (kN )+

∑
L′

∫ ∞

0

dpp2

(2π)3 f
N̄N,0
L′ (p) 1

2EkN
− 2Ep + i0+TL′L(p, kN ;EkN

) .

(2.6)
A diagrammatic representation of eq. (2.6) can be found in figure 2, where the full N̄Nγ
vertex is represented by the large shaded circle, while the first diagram on the right-hand
side is the so-called Born term, representing the bare N̄Nγ production vertex f N̄N,0

L . We
introduce two parameters to be fixed by fitting to the available experiments: Gp̄p,0

E = Gp̄p,0
M
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Figure 2. Diagrammatic representation of the vertex N̄Nγ (γ → N̄N) consisting of the Born term
and re-scattering in the N̄N system.

and Gn̄n,0
E = Gn̄n,0

M , with

f N̄N,0
0 (p) = GN̄N,0

M + MN

2
√
M2

N + p2
GN̄N,0

E , f N̄N,0
2 (p) = 1√

2

GN̄N,0
M − MN√

M2
N + p2

GN̄N,0
E

 .

It should be stressed that the parameters GN̄N,0
E/M are complex due to possible intermediate

annihilation processes, e.g., γ → π+π− → N̄N . The second diagram on the right hand
side in figure 2, corresponding to the integral part of eq. (2.6), provides the dressing of
the vertex via N̄N re-scattering.

The N̄N scattering amplitude TLL′(p, kN ;EkN
) in the relevant coupled 3S1 − 3D1 partial

wave will be calculated within the framework of SU(3) χEFT. Indeed, there are many
studies of the baryon-baryon and/or baryon-antibaryon interactions based on χEFT. See e.g.,
refs. [38, 51–53] who derived the NN potential up to next-to-next-to-next-to-leading order
(N3LO) from SU(2) χEFT, and refs. [54–58] for the nucleon-nucleon (NN), hyperon-nucleon
(Y N), and hyperon-hyperon (Y Y ) interaction potentials up to next-to-leading order (NLO)
from SU(3) χEFT. The merit of the present analysis based on SU(3) χEFT is that the
possible effects from kaon and η exchanges are included. This should be crucial since we want
to study the EMFFs up to 2.2 GeV, i.e. up to energies close to the Λ̄Λ threshold. Note that
in the energy region of 2− 2.2GeV, there is a wealth of electromagnetic data on the reactions
of e+e− → p̄p and e+e− → n̄n, including some essential observables such as differential cross
sections that help to fix the partial waves.

By exploiting the G-parity transformation the N̄N interaction can be easily derived from
available NN potentials, at least as far as the elastic part is concerned. For example, the
N̄N potential up to N2LO [59] utilizes the expressions for the NN interaction of ref. [38]
as starting point and the N3LO potential by Dai et al. [60] is based on the NN potential
by Epelbaum et al. [51]. Indeed, for the interaction due to one-boson exchange (OBE),
G-parity implies simply that

V OBE
N̄N

= (−1)IV OBE
NN , (2.7)

where I is the isospin of the exchanged pseudoscalar meson. Also the contributions of
two-boson exchange (TBE) involving pions and/or etas can be obtained through the G-parity
transformation. However, it is not applicable for contributions involving the K and K̄ mesons
because these do not have a well defined G-parity. In that case a separate calculation is
necessary, see appendix A. Once the N̄N potential is established we insert it into the LS
equation to obtain the scattering amplitude [59, 61],

TL′′L′(p′′, p′;Ek) = VL′′L′(p′′, p′) +
∑
L

∫ dpp2

(2π)3VL′′L(p′′, p)
1

2Ek − 2Ep + i0+TLL′(p, p′;Ek) .
(2.8)

– 5 –



J
H
E
P
0
8
(
2
0
2
4
)
2
0
8

Here, Ek =
√
s/2 and VL′′L(p′′, p′) is the N̄N potential. The details of calculating the

potentials up to NLO based on SU(3) χEFT are summarized in appendix A. In contrast to
N̄N potentials constructed within SU(2) χEFT, our interactions include η exchange in the
OBE potential and πη, ηη and KK̄ exchanges in the TBE potential. Inserting TL′′L′(p′′, p′;Ek)
into eq. (2.6), one can get the final amplitude for e+e− → N̄N .

3 Results and discussion

3.1 Fit procedure

The hadronic scattering amplitudes are taken as input in eq. (2.6) to evaluate the electron-
positron annihilation amplitude within the DWBA approach. Note that the amplitudes TLL′

of N̄N scattering and f N̄N,I
L of the N̄Nγ vertex are obtained in the isospin basis. To fit the

e+e− → N̄N data, one needs to transform these amplitudes to the physical basis,

f p̄p
L = 1√

2

(
f N̄N,I=0

L − f N̄N,I=1
L

)
, f n̄n

L = 1√
2

(
f N̄N,I=0

L + f N̄N,I=1
L

)
. (3.1)

In the isospin basis, we use MN = (Mp +Mn)/2, while in the calculation of the observables,
such as differential cross section and cross sections, we take the physical masses in the
phase-space factors. Once the e+e− → N̄N amplitudes are established the EMFFs GM and
GE can be extracted through eq. (2.5).

To fix the LECs of χEFT and other unknown parameters such as GN,0
E,M, we perform a

combined fit to two kinds of data sets: one of them is the S-matrix elements from a partial-
wave analysis (PWA) of N̄N scattering [62] and N̄N scattering lengths from χEFT [59, 61].
The other set includes the cross sections, angular distributions, and EMFFs of the processes
of e+e− → N̄N as well as N̄N → e+e−. With regard to N̄N scattering we focus on
energies not too far from the threshold, because here we expect that χEFT works reliably.
Specifically, we consider the first three momenta of the PWA [62] which means the region
Tlab ≤ 50MeV. Accordingly, in that region, but also for somewhat higher energies, the
results for the e+e− → N̄N observables are primarily determined by the properties of the
N̄N interaction. Thus, at those low energies (the energy dependence of) the EMFFs are
true predictions. However, with increasing energy and, in particular, in the upper region
of the considered energy range the outcome of the fit is more and more dominated by the
e+e− → N̄N data themselves, simply because here those are the only data that enter the
fitting procedure. Then the N̄N interaction serves as an effective and phenomenological tool
for the adjustments needed to describe those data. The resulting N̄N amplitudes themselves
are not expected to be the physical ones. There are 7 LECs in the N̄N interaction for
each of the two isospin channels, see eqs. (A.36), (A.37). Since they are all real numbers it
implies a total of 14 LECs for the analysis. There are two more parameters, related to the
Born term of the EMFFs, namely G0(I=0)

E/M and G
0(I=1)
E/M . Keep in mind that the overall phase

of the amplitude is not an observable. Thus, it can not be determined in fitting the data.
Therefore, one of the couplings of the EMFFs can be fixed to be real. Here, G0(I=0)

E/M is chosen
to be real. In addition, there are 9 normalization factors to fit the number of events of the
angular distributions, as the efficiencies are not known. Thus, there are 26 parameters to
be determined in total. On the other hand, there are 722 data points used in the analysis,
including 154 cross-section values [21–25, 27–33, 63], 477 points of differential cross sections, 7
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cross sections ratios (σ(e+e− → n̄n)/σ(e+e− → p̄p)), 44 individual EMFFs (GM and GE that
are extracted from the experiments), 18 S-matrix elements (complex) from the N̄N PWA [62]
and 2 N̄N scattering lengths (complex) [59, 61]. As will be discussed in the following
subsections, the parameters can be fixed well due to the availability of a large data set.

3.2 Fit to the N̄N scattering amplitudes

For simplicity, we will discuss the fit results of N̄N scattering in this subsection and the
ones for e+e− → N̄N in the next subsection. The N̄N potentials are calculated within SU(3)
χEFT up to NLO, in which there are 14 LECs corresponding to contact terms in the elastic
and the annihilation parts. To fix these parameters we fit to the S-matrix elements obtained
in a PWA of N̄N scattering data [62]. The phase shifts for the coupled N̄N partial wave
3S1 − 3D1 can be extracted from the S-matrix as follows(

S00 S02
S20 S22

)
=
(

cos(2ϵ1)ei2δ0 −i sin(2ϵ1)ei(δ0+δ2)

−i sin(2ϵ1)ei(δ0+δ2) cos(2ϵ1)ei2δ2

)
, (3.2)

where we adapt the convention of refs. [59, 61, 62]. The relation between the S-matrix and
the on-shell reaction amplitude T is given as

SLL′(k) = δLL′ − i

8π2kEkTLL′(k, k;Ek). (3.3)

The phase shifts δ0,2 are complex numbers due to the presence of annihilation, see e.g.
refs. [61, 62]. Thus, we plot both the real and imaginary parts of the phase shifts. As
mentioned above, we only fit our amplitudes in the low-energy region, up to Tlab = 50MeV.
The fit results are shown in figure 3, where the ‘data’ points are taken from ref. [62]. Notice
that, though we fit to the S-matrix elements of the PWA [62], we plot the phase shifts and
inelasticities to allow for an easy comparison with our previous works [59, 61], where likewise
the phase shifts were shown. We apply the values Λ =750, 800, 850, 900, and 950 MeV to
explore the influence of the cutoff on our results. Notice that Λ = 850MeV corresponds to
the upper limit,

√
s = 2.2GeV of this analysis. As can be seen in figure 3, all the results with

different cutoffs are consistent with the PWA [62] in the energy region of Tlab ≤ 50MeV, in
general even over the larger energy region of Tlab ≤ 100MeV, except for those of the D-waves.

The values of the LECs for the LO and NLO potentials of our fits are listed in table 1,
where we use the conventions of ref. [61], that is C̃2I+1 2S+1LJ

and C2I+1 2S+1LJ
, with the

first superscript related to the isospin. Also, the other couplings, such as G0(I)
E/M and the

normalization factors for the event distribution data sets, are given, as they are fixed in the
global fit. As can be observed from the black solid lines in figure 3, the fit results with the
cutoff Λ =850 MeV are overall better than those with other cutoffs. For instance, the one
with cutoff Λ =750 MeV describes better the imaginary part of the 3S1 phase shift with I = 1
but the result for the real part is worse, whereas just the opposite is the case for the cutoff
Λ =950 MeV. Thus, we adopt the potentials with cutoff Λ =850 MeV for the more detailed
discussion below. The χ2 is calculated for the S-matrix elements, in the same way as in
ref. [61]: the uncertainty of the ‘data’ from the PWA are estimated following ref. [61], where
we set ∆2

SLL′ = 0.1. It is found that the contribution from the N̄N ‘data’ to the total χ2 is
rather tiny. Indeed, the bulk of the obtained χ2 stems from e+e− → N̄N observables like
integrated and differential cross sections, see the discussions in the following subsection.
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Figure 3. Real and imaginary parts of the phase shifts and inelasticities at NLO for the 3S1 − 3D1
partial waves, with isospin I = 0 and/or I = 1. The red-filled circles are the results of the PWA [62].
The green dashed, blue dotted, black solid, purple dash-dotted, and orange dash-dot-dotted lines
represent our results with cutoffs Λ =750, 800, 850, 900, 950 MeV, respectively.

In figure 4, we provide our results for the phase shifts and inelasticities at LO and NLO
for Λ = 850MeV, shown as purple dashed and black solid lines, respectively. One can see that
at LO the phase shifts and inelasticities of the PWA are well described in the very low-energy
region, i.e. for Tlab ≤ 25MeV, which includes the first two energy points of the PWA. In
the NLO case, the ‘data’ are well reproduced up to Tlab ≤ 50MeV, which concerns the first
three points for each set. This is in line with the expected convergence pattern of χEFT. As
mentioned above, the scattering lengths are included in the fitting procedure, too. The results
are listed in table 2. The predictions by refs. [59, 61] are set to be the ‘data’. The errors
are set as ∆a = 0.1 fm, considering the difference between the calculations at different chiral
orders [59, 61]. Our scattering lengths are fairly close to those predicted by SU(2) χEFT.

The uncertainty is estimated following refs. [51, 61]. The main idea is to use the
expected size of higher-order corrections for the estimation of the theoretical uncertainty.
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LO NLO
Λ (MeV) 850 750 800 850 900 950

C̃13S1 (GeV−2) 0.0098 1.3165 1.9390 2.8716 3.5020 4.5199
C13S1 (GeV−4) – 1.3422 1.0455 1.0649 0.9994 1.0601
C1ϵ1 (GeV−4) – 2.4806 2.0745 1.9273 1.6603 1.3303
C̃a

13S1
(GeV−1) 0.2730 -0.6431 -0.4821 -0.3219 0.0214 0.5517

Ca
13S1

(GeV−3) – -1.9000 -0.8156 -0.3697 -0.1217 0.0363
Ca

1ϵ1
(GeV−3) – -2.0261 -1.4201 -1.0939 -0.8546 -0.6681

Ca
13D1

(GeV−3) – 0.8432 0.0061 0.0000 0.0003 0.0000
C̃33S1 (GeV−2) -0.0531 -0.0356 -0.0289 -0.0235 -0.0304 -0.0509
C33S1 (GeV−4) 0.1507 0.1620 0.1632 0.1727 0.1916
C3ϵ1 (GeV−4) 1.1900 0.9196 0.7727 0.6941 0.6482
C̃a

33S1
(GeV−1) -0.1614 0.0098 -0.0041 -0.0269 -0.0216 0.0215

Ca
33S1

(GeV−3) – 0.4299 0.3937 0.4536 0.4970 0.5050
Ca

3ϵ1
(GeV−3) – -4.7577 -3.4012 -2.5813 -2.1131 -1.8259

Ca
33D1

(GeV−3) – 0.0001 0.0000 0.0000 0.0000 0.0000

G
0(I=0)
E 0.2807 0.9222 1.0274 1.1795 1.2406 1.2669

G
0(I=1)
E

-0.4174 -0.0403 -0.0057 0.0385 0.0746 0.1048
+0.2979i +0.5287i +0.4872i +0.4494i +0.4134i +0.3781i

NBESIII 2019
p 6.0372 5.8976 5.9320 5.9734 5.9957 5.9902

NBESIII 2020
p 1.0277 0.9476 0.9495 0.9490 0.9468 0.9434

NBESIII 2021
p 18.2102 19.1115 19.1160 19.1184 19.1214 19.1258

NBaBar 2006
p 1.2101 1.1989 1.1987 1.1984 1.1983 1.1983

NBaBar 2013
p 1.2463 1.2189 1.2183 1.2173 1.2162 1.2149

NCMD−3 2016
p 1.3746 1.3274 1.3242 1.3225 1.3205 1.3169
NSND 2014

n 10.0870 9.9250 10.0633 10.2055 10.3328 10.4440
NSND 2019

n 0.6426 0.6740 0.6769 0.6678 0.6756 0.6685
NSND 2022

n 0.6065 0.5967 0.6043 0.6126 0.6210 0.6295

Table 1. Values of parameters at LO and NLO for different cutoffs. The superscript a indicates
parameters that are related to the annihilation part in eqs. (A.37). Note that all the LECs are in
units of 104 [61]. The normalization factors N are discussed in more detail later.

This work: LO This work: NLO N2LO [59] N3LO [61]
aI=0

3S1
(fm) 1.43–0.72i 1.35–0.94i 1.37–0.88i 1.42–0.88i

aI=1
3S1

(fm) 0.47–0.78i 0.45–0.79i 0.44–0.91i 0.44–0.96i

Table 2. Results of the 3S1 scattering lengths (in fm) from SU(2) χEFT [59, 61] and from our fit.
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Figure 4. Real and imaginary parts of the phase shifts and inelasticities at LO and NLO in the
3S1 − 3D1 partial waves, with the isospin I = 0, 1. The red-filled circles are from the PWA [62].
The purple dashed and black solid lines are the results at LO and NLO with cutoff Λ = 850 MeV,
respectively, and the sky blue and pink bands are the corresponding uncertainties.

The uncertainty ∆XNLO(k) of the NLO prediction XNLO(k) for a given observable X(k)
can be written as [51]

∆XNLO(k) = max
(
Q3 × |XLO(k)|, Q× |XLO(k)−XNLO(k)|

)
, (3.4)

with the parameter Q defined by

Q = max
(
k

Λb
,
Mπ

Λb

)
, (3.5)

where k is the c.m.f. momentum and Λb is the breakdown scale. Here we take Λb=900 MeV.
Note that the quantity X(k) represents either an observable such as a cross section or a
derived quantity, e.g., phase shifts. This method is expected to provide a natural and more
reliable estimate of the uncertainty than relying on cutoff variations.
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3.3 Fit to the e+e− observables

In this section, we discuss the results for the e+e− ↔ N̄N observables, i.e. cross sections,
angular distributions, and EMFFs. For the relevant formulae, see eqs. (2.5)–(3.7). Note that
these data and the ones for N̄N scattering are fitted simultaneously. For e+e− → p̄p, the
data sets of cross sections are taken form ADONE [13], Fenice [17–19], DM1 [14], DM2 [15],
BaBar [21, 22], CMD-3 [23, 24], BESIII [25, 27–29]. Data for e+e− → n̄n are taken from
Fenice [17, 19], SND [30, 31, 33] and BESIII [32, 34]. The p̄p → e+e− cross sections are
taken from PS170 [63]. However, it should be stressed that, since some old data sets have
significant errors, we only include data published after 2005 in the actual fitting procedure,
that is, the data from BaBar [21, 22], CMD-3 [23, 24], and BESIII [27–29] for e+e− → p̄p,
and SND [30, 31, 33] and BESIII [32, 34] for e+e− → n̄n. An exception is made for the data
by PS170 [63] since it is the only experimental information for the reaction p̄p → e+e−.

Our fits to the cross sections for e+e− → p̄p, n̄n, and p̄p → e+e− are summarized in
figure 5. The four graphs at the top are the fit results for LO (purple dashed) and NLO (black
solid) for the cutoff Λ = 850MeV, with the corresponding error bands in the colors sky-blue
and pink, respectively. The four graphs at the bottom are NLO results with different cutoffs:
the purple dashed, blue dotted, black solid, green dash-dotted, and orange dash-dot-dotted
lines are for cutoffs 750, 800, 850, 900, and 950 MeV, respectively. As can be seen, the LO
results are consistent with the data up to roughly 2GeV, while the NLO results agree with
the experiments rather well over the whole considered energy region, for all cutoffs.

Obviously, the e+e− → N̄N cross sections rise very quickly from the N̄N thresholds,
see figure 5. Then, for e+e− → p̄p, the cross section remains unchanged up to roughly
2 GeV, and eventually starts to decrease. Regarding p̄p → e+e−, the inverse process of
the former, the cross-section decreases rapidly with energy. The difference in the behavior
can be easily understood from the relation between the reaction cross sections, σp̄p→e+e− ≃
(k2

e/k
2
N )σe+e−→p̄p which follows from time reversal invariance [40]. For the cross section of

the process e+e− → n̄n, see the left side graphs in the second and fourth rows of figure 5,
there is also a strong rise near the threshold, but the situation for the proton and neutron
cases is a bit different: the one for the neutron starts to decrease rapidly at 1.9 GeV. As
discussed in ref. [10], this reveals that the oscillation of the so-called subtracted form factors
(SFFs) of the neutron and proton are different. The ratio of the cross sections,

Rnp = σ(e+e− → n̄n)/σ(e+e− → p̄p) , (3.6)

are essential to refine the analysis. As can be found, ours fit the data well. See the last
graph in the second and fourth rows. Nevertheless, in the low-energy region, the statistics
of the data is poor. It would be rather helpful to perform more experiments in the energy
region closer to the N̄N thresholds.

Experimental results for the angular distributions of e+e− → p̄p are available for
the energy intervals of 1.877–1.950 GeV/c2, 1.950–2.025 GeV/c2, 2.025–2.100 GeV/c2, 2.100–
2.200 GeV/c2, 1.920–2.000 GeV/c2, 2.000–2.300 GeV/c2, 1.920–2.000 GeV/c2, and at 2.000,
2.050, 2.100, 2.125, 2.150, 2.175, 2.2 GeV/c2. The data are taken from the works of the
BESIII [27–29], BaBar [21, 22], and CMD-3 [24] collaborations. In ref. [63], angular dis-
tributions for p̄p → e+e− can be found at the energies

√
s=1.9200, 1.9391, 1.9574, 1.9840,
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Figure 5. The comparison between our fit results and the experimental data sets of cross sections,
including the processes of e+e− → p̄p, n̄n, and p̄p→ e+e−. The experimental data sets are taken from
ADONE [13], Fenice [17–19], DM1 [14], DM2 [15], BaBar [21, 22], CMD-3 [23, 24], BESIII [25, 27–29],
SND [30, 31, 33], and PS170 [63].
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Figure 6. Our fit to the angular distributions of the processes of e+e− → p̄p, n̄n, and p̄p→ e+e−.
The experimental data are taken from BESIII [27–29, 34], BaBar [21, 22], CMD-3 [24], SND [30, 31, 33]
and PS170 [63].
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LO NLO

N χ2/N N χ2/N

Λ (MeV) 850 750 800 850 900 950

Cross Section 105 1.59 154 1.70 1.65 1.58 1.53 1.48

Differential cross section 221 1.31 477 1.59 1.57 1.53 1.49 1.47

Rnp 1 0.20 7 0.38 0.62 0.99 1.41 1.76

|GE/GM|, |GE| and |GM| 13 0.54 44 1.74 1.70 1.60 1.42 1.22

Phase shift 24 0.008 36 0.003 0.004 0.004 0.005 0.006

Scattering length 4 1.41 4 0.86 0.92 0.93 0.87 0.84

total 368 1.28 722 1.53 1.50 1.46 1.42 1.38

Table 3. The χ2/N of cross section, differential cross section, |GE/GM|, |GE|, |GM| and Rnp for the
LO and NLO fits. In the last row we list the total χ2/N to provide an overview of the fit quality.

and 2.0457 GeV. Angular distributions for e+e− → n̄n were measured at energy intervals
of 1.960–2.000, 1.8896–1.9020, 1.9120–1.9250, and 1.9460–1.9764 GeV/c2, and at the en-
ergies

√
s=1.920, 2.000, 2.050, 2.125, 2.150, end 2.175 GeV/c2. They are taken from the

SND [30, 31, 33] and BESIII [34] experiments.
A visual comparison between our results and the data is provided in figure 6. The purple

dashed and black solid lines are the results at LO and NLO, respectively. Correspondingly,
the sky-blue and pink bands are the uncertainties of LO and NLO, calculated from eq. (3.4).
Notice that for each data set of the event distribution we apply one constant normalization
factor for all energy values. For instance, for all the data points of BESIII in the year 2020 [28],
as shown in the first two rows, the normalization factor is labeled as NBESIII 2020

p .
As can be seen from figure 6, our fit is of high quality, and this confirms the reliability of

our analysis. The graphs of the first six rows and the first two graphs in the seventh row are
our results for the angular distributions for e+e− → p̄p and p̄p→ e+e−, where the last five
graphs in the indicated places are that for the latter reaction. The results for e+e− → p̄p

are better than that of the p̄p→ e+e−. This is partly caused by the lower statistics of the
latter data. Nevertheless, the p̄p→ e+e− differential cross-section data have no normalization
factors, and ours are consistent with them within the errors. The graphs in the three bottom
rows (except for the first two graphs) are our fits to the data sets of the angular distributions
of e+e− → n̄n. The data for the differential cross section have significant uncertainties except
for the one at the energy point

√
s = 2.125GeV. Our results agree well with these data points,

too. The data on the angular distributions have more minor errors, but the fit quality is not
as good as for the other two processes, e+e− → p̄p and p̄p→ e+e−. Nevertheless, our results
are still compatible with the data sets except for a few points near cos θ = ±1. Notice that the
measurements are difficult to perform close to cos θ = ±1. In order to provide a quantitative
overview of the quality of our results, we summarize the χ2 values of the fits for each cutoff
Λ in table 3. As can be seen, most of the available data are for total and differential cross
sections. For each kind of data set, our fits yield a χ2/N around one, where N is the number
of data points, while the contributions from phase shifts (by fitting to the S-matrix elements)
and scattering lengths are tiny. Finally, the total χ2/N can be found in the last row of table 3.
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Figure 7. The comparison between our results and the experimental datasets of effective EMFFs. The
experimental data sets are taken from ADONE [13], Fenice [17–19], DM1 [14], DM2 [15], BaBar [21, 22],
CMD-3 [23], BESIII [25, 27–29, 32], SND [30, 31, 33], PS170 [63].

The value for the fit with cutoff Λ = 850MeV is about 1.46. This indicates that our fit is
of high quality and it can be used to extract the individual EMFFs reliably.

3.4 Effective EMFFs and oscillations

The effective EMFF, |Geff |, is basically a parameterization of the total cross section, cf.
eq. (3.8), which is provided by many experimental groups. Ignoring the electron mass, the
cross section is given by

σ = 4πα2β

3s C(s)
[
|GN

M(s)|2 + 2M2
N

s
|GN

E (s)|2
]
. (3.7)

By defining GN
E = GN

M ≡ GN
eff the modulus of the effective EMFFs can be evaluated directly

from the integrated cross section [13, 14],

|Geff(s)| =
√√√√√ σe+e−→N̄N (s)

4πα2β
3s C(s)

[
1 + 2M2

N
s

] . (3.8)

Our results are presented in figure 7. The graph on the left side shows the effective EMFF of
the proton, and the one on the right side is that of the neutron. The purple dashed, blue
dotted, black solid, green dash-dotted, and orange dash-dot-dotted lines are our results at
NLO with cutoffs Λ =750, 800, 850, 900, 950 MeV, respectively. Obviously, these lines overlap
with each other, and for all cutoffs an excellent description of the effective EMFFs is obtained.
The effective EMFFs of the proton and the neutron exhibit similarities and differences. Both
effective EMFFs fall off rapidly at energies near the N̄N threshold, and then much more
slowly with increasing energy. However, there is a difference in the magnitude, with the
effective form factor of the proton being noticeably larger than that of the neutron.

As mentioned in the Introduction, an interesting phenomenon was discovered in the
analysis of the experiment concerning these effective EMFFs: they show an oscillatory
behavior, a feature which is prominently exposed once a dipole contribution is subtracted [3].
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Figure 8. Comparison between the SFFs deduced from the experiments and our predictions. The
purple dashed and black solid lines are our results at LO and NLO, with the corresponding error
bands in sky blue and pink, respectively. The cutoff is chosen to be Λ = 850MeV. The experimental
information is from BaBar [21, 22], BESIII [28, 29], and SND [31, 33].

Moreover, ref. [32] revealed that there is a phase difference between the oscillation of the
subtracted form factors (SFFs) of the proton and neutron. These SFFs are defined as the
difference between the effective EMFFs and the dipole contribution [3, 29, 32],

Gosc(s) = |Geff | −GD(s) , (3.9)

where GD is the dipole function given in [3, 29]

Gp
D(s) = Ap

(1 + s/m2
a)[1− s/q2

0]2
,

Gn
D(s) = An

[1− s/q2
0]2

,

with parameters fixed to Ap=7.7, An=3.5±0.1, m2
a=14.8 (GeV/c)2 and q2

0=0.71 (GeV/c)2.
For describing the SFF, in ref. [3] a function was suggested which consists of a damping factor
and a periodic piece, namely Gosc ≡ A exp (−Bp) cos (Cp+D). Here p is the momentum
of the antinucleon in the rest-frame of the nucleon while the parameters A,B,C,D fix
the overall normalization, the damping, the oscillation period and the so-called phase,
respectively. When applying these formulae to the latest measurements of e+e− → p̄p [29]
and e+e− → n̄n [32] by the BESIII Collaboration, a phase difference in the oscillations of
the EMFFs of ∆ = |Dp − Dn| = (125 ± 12)◦ was established.
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Let us briefly discuss the oscillations of the SFFs in the energy region below 2.2 GeV. The
results are similar to the ones in our earlier paper [10]. Our predictions for the SFFs are shown
in figure 8. They are evaluated via eq. (3.9), by using directly Geff , obtained by eq. (3.8)
from the calculated e+e− → N̄N cross sections. We recall that in the present analysis, the
N̄N FSI is taken into account, and our results are compatible with most of the available data
around the thresholds. This is different in some other pertinent studies in the literature.

As can be seen already from figure 7, in the energy region up to
√
s = 2.2MeV no obvious

oscillation pattern of effective EMFF is visible, neither for the proton nor for the neutron.
After subtracting the contribution of the dipole, there is a distinct energy dependence in
the SFFs, more pronounced for the proton than for the neutron, cf. figure 8. This energy
dependence can be reproduced by our calculation which includes the N̄N FSI, but not by
some simple functions like A/s2. Besides, it looks like that there is no phase difference
between the SFFs (Gosc) of the proton and that of the neutron. Actually, in both cases the
value at the respective thresholds is almost the same. In fact, in our earlier paper [10], the
SFFs of the nucleons can be described by two fractional oscillators: one is the overdamped
oscillator that dominates in the low-energy region, and the other is the underdamped oscillator
that dominates in the high-energy region above 2 GeV. It is worth pointing out that there
is a phase difference between the underdamped oscillators of the proton and the neutron,
but there is no such difference in the overdamped ones. Our present results of the invisible
oscillation in the low-energy region is consistent with the overdamped oscillators of our earlier
paper [10]. Of course, this conclusion remains to be checked by more accurate measurements
near the threshold in future experiments.

3.5 Individual EMFFs

From the reaction amplitude one can also extract the individual EMFFs. Results of GE and
GM, and their ratio GE/GM, including both the moduli and the phases, are shown in figure 9.
The graphs in the first two columns are our results at LO and NLO, with cutoff Λ = 850MeV,
where the purple dashed and black solid lines are for LO and NLO, with the corresponding
error bands sky blue and pink, respectively. The graphs in the last two columns are the
results at NLO with different cutoffs, Λ = 750, 800, 850, 900, 950MeV, corresponding to the
purple dashed, blue dotted, black solid, green dash-dotted, and orange dash-dot-dotted lines,
respectively. There are only a few published points for the modulus of the individual EMFFs,
and our results are consistent with them.

The electric and magnetic form factors exhibit a similar behavior as the effective EMFFs,
i.e. all of them decrease rapidly around the thresholds and more slowly for higher energies.
Regarding the proton, the electric form factor decreases more rapidly with increasing

√
s

above 2 GeV, compared with the magnetic form factor. In case of the neutron it is the
opposite. The ratio |GE/GM| is shown in the graphs of the third row of figure 9. Both of the
ratios start from unity at the threshold by definition. However, the one of the proton increases
above |GE/GM| = 1 immediately after the threshold and then decreases with increasing
energy

√
s, while the ratio of the neutron form factors decreases around the threshold and

then increases as the energy increases. For the proton, the turning point of the ratio is at
around 1.9 GeV, while that of the neutron is at 2.0 GeV. Interestingly, it looks as if both of
them will go back to unity at higher energies, implying that |GE| would become equal to
|GM| again in the high-energy region. This can be checked by future experiments.
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Figure 9. Predictions for the individual EMFFs, GE, GM, and the ratios GE/GM, including the
modulus and the phases. The data shown in the graphs are taken from BaBar [21, 22], CMD-3 [23],
BESIII [27–29, 34], SND [33], PS170 [63]. The results in the left two columns are for the cutoff
Λ = 850MeV.
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At the threshold our results for |GM | and |GE | are slightly larger than those obtained by
phenomenological fits, see, e.g., refs. [4, 34]. This is a consequence of the fact that in our
calculation the effects of the N̄N interaction are taken into account explicitly. It leads to
an enhancement of the cross section and, accordingly, of the EMFFs at low energies which
cannot be described by simple parameterizations of the form factors [3, 34].

The phases of the EMFFs are shown in the second, fourth, and sixth rows of figure 9.
Note that there can be an overall phase factor for the individual EMFFs, which can not
be observed. Therefore, we set all the phases to be zero at the relevant thresholds. The
variations of the phases with the energies are much more pronounced than those of the
modulus. As can be seen, the phases of all the individual EMFFs decrease monotonously
as the energy increases, except for that of the electric form factors of the neutron, which
decreases first and then increases. It may indicate the difference between the charge of the
valence quarks for the proton and the neutron. Interestingly, there is a peculiar behavior of
the phases of GE/GM very close to the thresholds, see the insets in the last row of figure 9
(and also figure 8 in [40]). Obviously the phase between the electric and the magnetic form
factors varies significantly in the low-energy region, i.e. over the first 100 MeV or so. This is
not caused by the mass difference between the proton and neutron which is ignored since
the N̄N scattering amplitudes are evaluated in the isospin basis. Actually, the turning point
of the phase is at roughly 1.883 GeV, i.e. above the thresholds of p̄p or n̄n. We note that
the electric and magnetic form factors have almost no phase difference without FSI. Also,
the phase difference is much smaller for the LO results, where the D-wave contributions are
smaller.3 The strong variation for the NLO FSI reveals that there is a remarkable sensitivity,
reflected in the properties of the EMFFs near the threshold. This is interesting and deserves
further study through both theory and experiment.

4 Conclusions

In this paper we evaluated the individual EMFFs of the proton and neutron in the processes
e+e− → p̄p and e+e− → n̄n. The final-state interaction between antinucleon and nucleon is
taken into account. The latter is based on an N̄N scattering amplitude generated from an
N̄N potential derived within SU(3) χEFT up to NLO. It is included in the calculation of the
integrated and differential cross sections of the processes e+e− → N̄N within the DWBA.

An excellent description of the available data on the reaction e+e− → N̄N up to 2.2 GeV
is achieved. Specifically, our calculations also reproduce the strong enhancement of the cross
sections near the N̄N thresholds observed in both processes. The individual EMFFs, GE
and GM, of the proton and neutron, and their ratio GE/GM, including the modulus and the
phases, are predicted. It turned out that the phases of the electric form factors of the proton
and the neutron are quite different. Interestingly, it is found that the relation |GE| = |GM|,
strictly valid at the N̄N threshold, is eventually restored in the higher-energy region.

More accurate measurements near the threshold, hopefully performed in the near future,
will be essential to get more precise constraints on electric and magnetic form factors of the
nucleons and are important to refine our analysis. This will be helpful to understand the
properties of the nucleons as well as the strong interaction.

3In ref. [64] a similar behavior is observed in the LO calculation of the EMFFs of Λc. However, the one in
ref. [64] is more flat. This is so because in the Λ+

c Λ̄c
− case there is no D-wave contribution at LO.
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A The potential for the N̄N interaction

A.1 Lagrangians of SU(3) χEFT

The calculation of nucleon-nucleon and nucleon-hyperon scatterings within SU(3) χEFT
has been given in ref. [54]. Here, we focus on the direct calculation of antinucleon-nucleon
scattering based on SU(3) χEFT, too. Note that most of the formulas in the present paper
are similar to those in ref. [54]. However, for the convenience of the readers, we list all the
details here. The interaction Lagrangian of baryons coupling to mesons can be obtained
from SU(3) χEFT [54, 65],

LMB = ⟨B̄(iγµDµ −M0)B⟩ − D

2 ⟨B̄γµγ5{uµ, B}⟩ − F

2 ⟨B̄γµγ5[uµ, B]⟩ , (A.1)

where ⟨· · · ⟩ denotes the flavor trace, and the covariant derivative is DµB = ∂µB + [Γµ, B],
with Γµ = 1

2(u
†∂µu+ u∂µu

†). Here, one has uµ = i(u†∂µu− u∂µu
†) and u = exp(iΦ/

√
2f0),

where f0 is the Goldstone boson decay constant in the three-flavor chiral limit, and M0 is
the baryon mass in the three-flavor chiral limit. F and D are coupling constants which
satisfy F + D = gA ≃ 1.27. The baryon octet matrix B and the meson octet matrix Φ
have the following forms

Φ =


π0
√

2 + η√
6 π+ K+

π− − π0
√

2 + η√
6 K0

K− K̄0 − 2η√
6

 , B =


Σ0
√

2 + Λ√
6 Σ+ p

Σ− −Σ0
√

2 + Λ√
6 n

−Ξ− Ξ0 − 2Λ√
6

 . (A.2)

After expanding the Lagrangian in eq. (A.1), the relevant interaction Lagrangians of the one-
and two-mesons coupling with baryons can be obtained as

LBBΦ = −
√
2

2f0
(D⟨B̄γµγ5{∂µΦ, B}⟩+ F ⟨B̄γµγ5[∂µΦ, B]⟩) ,

LBBΦΦ = i

4f2
0
⟨B̄ [[Φ, ∂µΦ], B]⟩ . (A.3)
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The concrete form of the interaction Lagrangians can be obtained by taking the flavor trace,

LBBΦ = − fNNπ

(
p̄γµγ5p∂µπ

0 − n̄γµγ5n∂µπ
0 +

√
2p̄γµγ5n∂µπ

+ +
√
2n̄γµγ5p∂µπ

−
)

− fΛNK

(
Λ̄γµγ5p∂µK

− + p̄γµγ5Λ∂µK
+ + Λ̄γµγ5n∂µK̄

0 + n̄γµγ5Λ∂µK
0
)

− fΣNK

(
Σ̄0γµγ5p∂µK

−+p̄γµγ5Σ0∂µK
++

√
2Σ̄−γµγ5p∂µK̄

0+
√
2p̄γµγ5Σ+∂µK

0

+
√
2Σ̄+γµγ5n∂µK

−+
√
2n̄γµγ5Σ−∂µK

+−Σ̄0γµγ5n∂µK̄
0−n̄γµγ5Σ0∂µK

0
)

− fNNη

(
p̄γµγ5p∂µη + n̄γµγ5n∂µη

)
+ · · · ,

LBBΦΦ = i

4f2
0

[
p̄γµp(π+∂µπ

− − π−∂µπ
+)− n̄γµn(π+∂µπ

− − π−∂µπ
+)

−
√
2p̄γµn(π+∂µπ

0 − π0∂µπ
+)− n̄γµp(π0∂µπ

− − π−∂µπ
0)

+ 2p̄γµp(K+∂µK
− −K−∂µK

+) + n̄γµn(K+∂µK
− −K−∂µK

+)
+ p̄γµp(K0∂µK̄

0 − K̄0∂µK
0) + 2n̄γµn(K0∂µK̄

0 − K̄0∂µK
0)

+ p̄γµn(K+∂µK̄
0 − K̄0∂µK

+) + n̄γµp(K0∂µK
− −K−∂µK

0)
]
+ · · · , (A.4)

where ‘· · · ’ represents terms that will not be used in the calculation of the N̄N scattering
potentials up to NLO. The coupling constants are given as [54],

fNNπ = f, fNNη = 1√
3
(4α− 1)f,

fΛNK = − 1√
3
(1 + 2α)f, fΣNK = (1− 2α)f , (A.5)

with α = F/(F +D) and f = gA/2f0. The calculation will be performed in the framework
of old-fashioned time-ordered perturbation theory [66]. The interaction Hamiltonians are
needed and are defined as

WI = −
∫

dx3[LI(x)]x0=0 , (A.6)

where LI is the Lagrangians of LBBΦ and LBBΦΦ as given in eq. (A.4).

A.2 The OBE potential

In practice, the N̄N scattering equation is solved in the isospin basis. Hence, we first calculate
the potentials in the physical basis according to time-ordered perturbation theory and then
transform them into the isospin basis. In the physical basis, one has Vp̄p→p̄p = Vn̄n→n̄n and
Vp̄p→n̄n = Vn̄n→p̄p, neglecting isospin breaking. The relation of the potentials between the
physical and isospin bases satisfies

Vp̄p→p̄p = 1
2(V

I=0
N̄N

+ V I=1
N̄N

), Vp̄p→n̄n = 1
2(V

I=0
N̄N

− V I=1
N̄N

) . (A.7)

As a result, only Vp̄p→p̄p and Vp̄p→n̄n are needed to determine the whole potential. The
contributions to the N̄N potential up to NLO are shown in figure 10, and consist of OBEs,
TBEs, and contact terms. The TBE potentials include football, left and right triangle,
planar, and cross box diagrams.
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Figure 10. The Feynman diagram for N̄N scattering up to NLO.

The OBE potential for the process of p̄p → p̄p is defined as

⟨p̄p|WBBΦGWBBΦ|p̄p⟩ =
1

(2π)3 δ
3(p1 + p2 − p′

1 − p′
2)V OBE

p̄p→p̄p , (A.8)

where the propagator is G = 1/(z − H0 + i0+), with H0 the energy operator of the free
particle and z the total energy of the initial state. p1,2 is the three-momentum of the proton,
antiproton in the initial state, and p′

1,2 for the final state. In the language of creation and
annihilation operators, the initial and final states are defined as

|p̄p⟩ = d†p1,λ1
c†p2,λ2

|0⟩, ⟨p̄p| = ⟨0|cp′
1,λ′

1
dp′

2,λ′
2
, (A.9)

where λ(′)
i (i = 1, 2) is the helicity of the proton or antiproton in initial (final) states. The

potential in eq. (A.8) includes π0 and η exchanges. Taking π0 exchange as an example, the
Lagrangian −fNNπp̄γ

µγ5p∂µπ
0 in eq. (A.4) needs to be considered. The proton, antiproton

and π0 fields are defined as

p̄ = 1
(2π)3/2

∑
ξ

∫
d3k

[
ū(k, ξ)c†kξe

ik·x + v̄(k, ξ)dkξe
−ik·x

]
,

p = 1
(2π)3/2

∑
ξ

∫
d3k

[
u(k, ξ)ckξe

−ik·x + v(k, ξ)d†kξe
ik·x
]
,

π0 = 1
(2π)3/2

∫ d3l√
2ωl,π

(
a0

l e
−il·x + a0†

l e
il·x
)
, (A.10)

where the pion energy is ωl,π =
√
l2 +m2

π, with l = |l|. The creation and annihilation
operators of the proton and antiproton, c†kξ , d

†
kξ and ckξ , dkξ, satisfy anticommutation

relations, and the pion operators, a0†
l and a0

l of π0, satisfy commutation relations. The
spinors of the proton and the antiproton are given as

u(k, ξ) =
√
Ek +MN

2Ek

(
1

σ·k
Ek+MN

)
|ξ⟩, v(k, ξ) = iγ2u∗(p, ξ) , (A.11)
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with the energy Ek =
√
k2 +M2

N and k = |k|. Applying eqs. (A.9), (A.10) and the commu-
tation and anticommutation relations between the creation and annihilation operators, the
π0 exchange potential V π0

p̄p→p̄p for p̄p scattering can be obtained. One has

V π0
p̄p→p̄p = f2

NNπ

[
− ū(p

′
2, λ

′
2)/lγ5u(p2, λ2)v̄(p1, λ1)/lγ5v(p′

1, λ
′
1)

2ω|p′
1−p1|,π(z − Ep2 − Ep′1

− ω|p′
1−p1|,π)

− v̄(p1, λ1)/l
′
γ5v(p′

1, λ
′
1)ū(p′

2, λ
′
2)/l

′
γ5u(p2, λ2)

2ω|p′
1−p1|,π(z − Ep1 − Ep′2

− ω|p′
1−p1|,π)

]
+ · · · , (A.12)

where · · · denotes the s channel contribution caused by N̄N annihilating into a pion and then
creating a N̄N pair. This part is not written out as it will be absorbed into the annihilation
potential eventually. The corresponding Feynman diagrams are shown in the first row of
figure 10, the first term corresponds to the second diagram, with the momentum of π0 given
by lµ = (ω|p′

1−p1|,π,−p′
1 + p1), and the second term corresponds to the first diagram, with

l′µ = (ω|p′
1−p1|,π,p

′
1 − p1). According to eq. (A.11), the relation between the u and v spinors

can be obtained through transposition and Dirac matrix operation

v̄γµγ5v = −ūγµγ5u . (A.13)

Transforming the terms in eq. (A.12) into the c.m.f. and applying eq. (A.13), the potential
V π0

p̄p→p̄p is finally given as

V π0
p̄p→p̄p = f2

NNπ

[
ū(−p′, λ′2)/lγ5u(−p, λ2)ū(p′, λ′1)/lγ5u(p, λ1)

2ωq,π(z − Ep − Ep′ − ωq,π)

+ ū(p
′, λ′1)/l

′
γ5u(p, λ1)ū(−p′, λ′2)/l

′
γ5u(−p, λ2)

2ωq,π(z − Ep − Ep′ − ωq,π)

]
, (A.14)

where p and p′ are the three-momenta of the initial and final states in the c.m.f., respectively.
Note that in the c.m.f., the momenta of the π0 becomes lµ = (ωq,π,−q) and l′µ = (ωq,π, q)
for these two terms, where the transferred momentum is q = p′ − p. In the non-relativistic
approximation the terms involving the spinors of eq. (A.11) reduce to

ū(p′, λ′)/lγ5u(p, λ) ≈ ⟨λ′|σ · q|λ⟩, ū(p′, λ′)/l ′γ5u(p, λ) ≈ −⟨λ′|σ · q|λ⟩. (A.15)

Adopting the static approximation for z in the propagator yields z ≃ Ep+Ep′ [66]. Combining
it with eq. (A.15), one obtains the final form of the one-pion exchange potential,

V π0
p̄p→p̄p ≈ −f2

NNπ

⟨λ′2|σ · q|λ2⟩⟨λ′1|σ · q|λ1⟩
q2 +m2

π

. (A.16)

Similarly, the OBE potential for the p̄p scattering from η exchange has the following form

V η
p̄p→p̄p ≈ −f2

NNη

⟨λ′2|σ · q|λ2⟩⟨λ′1|σ · q|λ1⟩
q2 +m2

η

. (A.17)

As mentioned above, the potential for the process p̄p→ n̄n is also needed to determine
the N̄N potential in the isospin basis. One has

⟨n̄n|WBBΦGWBBΦ|p̄p⟩ =
1

(2π)3 δ
3(p1 + p2 − p′

1 − p′
2)V OBE

p̄p→n̄n . (A.18)
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Isospin π η

I = 0 3 1
I = 1 −1 1

Table 4. The isospin factor IN̄N→N̄N for the OBE potentials.

Here, only π exchange appears. The relevant Lagrangians are −fNNπ

√
2p̄γµγ5n∂µπ

+ and
−fNNπ

√
2n̄γµγ5p∂µπ

− from LBBΦ. With a calculation similar to the one above one obtains

V OBE
p̄p→n̄n = −2f2

NNπ

⟨λ′2|σ · q|λ2⟩⟨λ′1|σ · q|λ1⟩
q2 +m2

π

. (A.19)

Finally, the potential in the isospin basis can be obtained through the relation given in
eq. (A.7),

V I=0
N̄N

= −3f2
NNπ

⟨λ′2|σ · q|λ2⟩⟨λ′1|σ · q|λ1⟩
q2 +m2

π

− f2
NNη

⟨λ′2|σ · q|λ2⟩⟨λ′1|σ · q|λ1⟩
q2 +m2

η

,

V I=1
N̄N

= f2
NNπ

⟨λ′2|σ · q|λ2⟩⟨λ′1|σ · q|λ1⟩
q2 +m2

π

− f2
NNη

⟨λ′2|σ · q|λ2⟩⟨λ′1|σ · q|λ1⟩
q2 +m2

η

. (A.20)

Defining an isospin factor IN̄N→N̄N , similar to ref. [54], the final results of OBE can be
expressed as

V OBE
N̄N→N̄N

= −f2
NNP

⟨λ′2|σ · q|λ2⟩⟨λ′1|σ · q|λ1⟩
q2 +m2

P

IN̄N→N̄N , (A.21)

with P the relevant pseudoscalar meson. The isospin factors can be extracted from the
potentials as given in eq. (A.20), and they are listed in table 4. Comparing them with
the isospin factors of the OBE potential of NN , as shown in table 2 of ref. [54], one finds
signs as expected from the G-parity transformation, eq. (2.7). The relativistic correction
is considered in OBE potential, that is

Ṽ OBE
N̄N→N̄N

= V OBE
N̄N→N̄N

(
1− p′2 + p2

2m2
N

)
(A.22)

A.3 The TBE potential

The TBE potentials correspond to the set of one-loop Feynman diagrams shown in the second
and third rows in figure 10. As discussed above, the potentials will be taken as kernel in the
LS equation to obtain the N̄N scattering amplitudes. Therefore, to avoid double counting,
we should consider only the irreducible part of those diagrams. In this section, we take
the football diagrams as an example to illustrate the calculation of TBE potentials. The
corresponding Feynman diagrams are the first two graphs in the second row of figure 10.
The potential for the process p̄p → p̄p is defined as

⟨p̄p|WBBΦΦGWBBΦΦ|p̄p⟩ =
1

(2π)3 δ
3(p1 + p2 − p′

1 − p′
2)V Football

p̄p→p̄p , (A.23)
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where the potential V Football
p̄p→p̄p contains π+π−, K+K− and K0K̄0 exchanges. For π+π− ex-

change, the vertex is coming from the chiral effective Lagrangian ip̄γµp(π+∂µπ
−−π−∂µπ

+)/4f2
0 .

The π+ and π− meson fields are defined as

π+ = 1
(2π)3/2

∫ d3l√
2ωl,π

(
ale

−il·x + b†le
il·x
)
,

π− = 1
(2π)3/2

∫ d3l√
2ωl,π

(
ble

−il·x + a†le
il·x
)
, (A.24)

where a†l , al and b†l , bl are the creation and annihilation operators of π+ and π−, respectively.
After performing commutation and anti-commutation operations between the creation and
annihilation operators for mesons and baryons, eliminating the Dirac delta function through
momentum integration, and summing the spins, one has

V π+π−
p̄p→p̄p = − 1

16f4
0

∫ d3l1
(2π)3

[
ū(p′

2, λ
′
2)(/l1 − /l2)u(p2, λ2)v̄(p1, λ1)(/l1 − /l2)v(p′

1, λ
′
1)

4ωl1,πω|l1+p′
1−p1|,π(z − Ep2 − Ep′1

− ωl1,π − ω|l1+p′
1−p1|,π)

+ v̄(p1, λ1)(/l1 − /l
′
2)v(p′

1, λ
′
1)ū(p′

2, λ
′
2)(/l1 − /l

′
2)u(p2, λ2)

4ωl1,πω|l1−p′
1+p1|,π(z − Ep1 − Ep′2

− ωl1,π − ω|l1−p′
1+p1|,π)

]
+ · · · , (A.25)

where · · · denotes the s channel contributions again. Specifically, the first diagram in the
second row of figure 10 corresponds to the second term of eq. (A.25), while the second diagram
corresponds to the first term. The four-momenta of pions in the first term are lµ1 = (ωl1,π, l1)
for the π+ and lµ2 = (ω|l1+p′

1−p1|,π,−l1 − p′
1 + p1) for the π−, and the momenta in the second

term are l1 for the π+ and l′µ2 = (ω|l1−p′
1+p1|,π,−l1 + p′

1 − p1) for the π−. One useful relation
for transforming the Lorentz vectors composed of spinors and Dirac matrix is

v̄γµv = ūγµu . (A.26)

With it, one can transform the potentials given in eq. (A.25) into the c.m.f.,

V π+π−
p̄p→p̄p = − 1

16f4
0

∫ d3l1
(2π)3

[
ū(−p′, λ′2)(/l1 − /l2)u(−p, λ2)ū(p′, λ′1)(/l1 − /l2)u(p, λ1)

4ωl1,πω|l1+q|,π(z − Ep2 − Ep′1
− ωl1,π − ω|l1+q|,π)

+ ū(p
′, λ′1)(/l1 − /l

′
2)u(p, λ1)ū(−p′, λ′2)(/l1 − /l

′
2)u(−p, λ2)

4ωl1,πω|l1−q|,π(z − Ep1 − Ep′2
− ωl1,π − ω|l1−q|,π)

]
+ · · · , (A.27)

where lµ2 = (ω|l1+q|,π,−l1 − q) and l′µ2 = (ω|l1−q|,π,−l1 + q). For the spinor part in non-
relativistic approximation one obtains

ū(p′, λ′)(/l1 − /l2)u(p, λ) ≈ ⟨λ′|λ⟩(ωl1,π − ω|l1+q|,π) ,

ū(p′, λ′)(/l1 − /l
′
2)u(p, λ) ≈ ⟨λ′|λ⟩(ωl1,π − ω|l1−q|,π) . (A.28)
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Then, the potential can be written in the form

V π+π−
p̄p→p̄p ≈ 1

16f4
0

∫ d3l1
(2π)3

[
⟨λ′2|λ2⟩⟨λ′1|λ1⟩(ωl1,π − ω|l1+q|,π)2

4ωl1,πω|l1+q|,π(ωl1,π + ω|l1+q|,π)

+
⟨λ′2|λ2⟩⟨λ′1|λ1⟩(ωl1,π − ω|l1−q|,π)2

4ωl1,πω|l1−q|,π(ωl1,π + ω|l1−q|,π)

]

= 1
32f4

0

∫ d3l1
(2π)3

⟨λ′2|λ2⟩⟨λ′1|λ1⟩(ωl1,π − ω|l1+q|,π)2

ωl1,πω|l1+q|,π(ωl1,π + ω|l1+q|,π)

= 1
32f4

0

∫ d3l1
(2π)3

⟨λ′2|λ2⟩⟨λ′1|λ1⟩(ω|l1−q/2|,π − ω|l1+q/2|,π)2

ω|l1−q/2|,πω|l1+q/2|,π(ω|l1−q/2|,π + ω|l1+q/2|,π)

= 1
32f4

0

∫ d3l1
8(2π)3

⟨λ′2|λ2⟩⟨λ′1|λ1⟩(ω|l1/2−q/2|,π − ω|l1/2+q/2|,π)2

ω|l1/2−q/2|,πω|l1/2+q/2|,π(ω|l1/2−q/2|,π + ω|l1/2+q/2|,π)

= 1
128f4

0

∫ d3l1
(2π)3

⟨λ′2|λ2⟩⟨λ′1|λ1⟩(ω−,π − ω+,π)2

ω−,πω+,π(ω−,π + ω+,π)
, (A.29)

where one has

ω±,P =
√
(l1 ± q)2 + 4m2

P = 2ω|l1/2±q/2|,P . (A.30)

In the first, second, and third steps, one performs the reflection l1 → −l1, translation
l1 → l1 − q/2, and the scaling l1 → l1/2, respectively.

The football diagrams due to K+K− and K0K̄0 exchanges involve the Lagrangians
ip̄γµp(K+∂µK

− −K−∂µK
+)/2f2

0 and ip̄γµp(K0∂µK̄
0 − K̄0∂µK

0)/4f2
0 . Analogous to what

has been done for the two pions exchange abovve, one has

V K+K−
p̄p→p̄p = 1

32f4
0

∫ d3l1
(2π)3

⟨λ′2|λ2⟩⟨λ′1|λ1⟩(ω−,K − ω+,K)2

ω−,Kω+,K(ω−,K + ω+,K) ,

V K0K̄0
p̄p→p̄p = 1

4V
K+K−

p̄p→p̄p . (A.31)

At last, one obtains the complete potential of the process of p̄p → p̄p from the football
diagrams,

V Football
p̄p→p̄p = 1

128f4
0

∫ d3l1
(2π)3

⟨λ′2|λ2⟩⟨λ′1|λ1⟩(ω−,π − ω+,π)2

ω−,πω+,π(ω−,π + ω+,π)

+ 5
128f4

0

∫ d3l1
(2π)3

⟨λ′2|λ2⟩⟨λ′1|λ1⟩(ω−,K − ω+,K)2

ω−,Kω+,K(ω−,K + ω+,K) . (A.32)

Similarly, the complete potential of the process of p̄p → n̄n, from the football diagrams
with ππ and KK̄ exchanges, are given by

V Football
p̄p→n̄n = 1

64f4
0

∫ d3l1
(2π)3

⟨λ′2|λ2⟩⟨λ′1|λ1⟩(ω−,π − ω+,π)2

ω−,πω+,π(ω−,π + ω+,π)

+ 1
128f4

0

∫ d3l1
(2π)3

⟨λ′2|λ2⟩⟨λ′1|λ1⟩(ω−,K − ω+,K)2

ω−,Kω+,K(ω−,K + ω+,K) . (A.33)
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With eqs. (A.32), (A.33), one gets the potentials of the football diagrams in the isospin basis,

V I=0
N̄N

= 3
128f4

0

∫ d3l1
(2π)3

⟨λ′2|λ2⟩⟨λ′1|λ1⟩(ω−,π − ω+,π)2

ω−,πω+,π(ω−,π + ω+,π)

+ 3
64f4

0

∫ d3l1
(2π)3

⟨λ′2|λ2⟩⟨λ′1|λ1⟩(ω−,K − ω+,K)2

ω−,Kω+,K(ω−,K + ω+,K) ,

V I=1
N̄N

= − 1
128f4

0

∫ d3l1
(2π)3

⟨λ′2|λ2⟩⟨λ′1|λ1⟩(ω−,π − ω+,π)2

ω−,πω+,π(ω−,π + ω+,π)

+ 1
32f4

0

∫ d3l1
(2π)3

⟨λ′2|λ2⟩⟨λ′1|λ1⟩(ω−,K − ω+,K)2

ω−,Kω+,K(ω−,K + ω+,K) . (A.34)

Again, we can define the isospin factor IFootball
N̄N→N̄N

for simplicity. One has

V Football
N̄N

= − 1
1024f4

0

∫ d3l′1
(2π)3

⟨λ′2|λ2⟩⟨λ′1|λ1⟩(ω+,P − ω−,P )2

ω+,Pω−,P (ω+,P + ω−,P )
IFootball

N̄N→N̄N
. (A.35)

The isospin factors are extracted from eq. (A.34) and listed in table 5. Note that the isospin
factors for the planar box, crossed box, left triangle, right triangle diagrams are also listed. A
detailed derivation of those contributions can be found in appendix A.5.

Comparing with the isospin factors of the NN potentials given by ref. [54], for π and
η we recover again the G-parity transformation, that is,

V TBE
N̄N

= (−1)I1+I2V TBE
NN ,

where I1 and I2 are the isospin of the two exchanged pseudoscalar bosons. Specifically, for
πη exchanges, the TBE potentials of N̄N and NN scatterings differ by a minus sign, and
for ππ and ηη exchanges, they have the same sign.4 However, this rule is not applicable for
KK̄ exchange simply because K and K̄ do not have definite G-parity.

A.4 The contact terms and the annihilation potential

Besides the contributions from boson exchanges, there are standard contact terms and an
annihilation part, too. The contact terms for 3S1 − 3D1 partial waves up to NLO are given
by [51, 59, 61]

V (3S1) = C̃3S1 + C3S1(p
2 + p′2) ,

V (3D1 − 3S1) = Cϵ1p
′2, V (3S1 − 3D1) = Cϵ1p

2 , (A.36)

where p and p′ are the c.m.f. momenta of the initial and final N̄N systems, respectively. Here,
the C̃i denote the LECs that arise at leading order (LO), corresponding to the contact terms
without derivatives. The Ci arise at NLO, corresponding to the terms with two derivatives.
An essential difference between the NN and N̄N interaction is the presence of annihilation
processes in the latter. Following refs. [59, 61], the annihilation part of the N̄N potential

4It is worth pointing out that these relations have already been given in ref. [47], too.
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Isospin Intermediate ππ πη ηη KK̄
baryons

Football I = 0 −24 – – −48
I = 1 8 – – −32

Left Triangle

I = 0
N 12 – – –
Λ – – – 6
Σ – – – 6

I = 1
N −4 – – –
Λ – – – 2
Σ – – – 10

Right Triangle

I = 0
N̄ 12 – – –
Λ̄ – – – 6
Σ̄ – – – 6

I = 1
N̄ −4 – – –
Λ̄ – – – 2
Σ̄ – – – 10

Planar Box

I = 0

N̄N 9 6 1 –
Λ̄Λ – – – 2
Σ̄Σ – – – 6

Σ̄Λ + Λ̄Σ – – – 0

I = 1

N̄N 1 −2 1 –
Λ̄Λ – – – 0
Σ̄Σ – – – 4

Σ̄Λ + Λ̄Σ – – – 4

Cross Box

I = 0

N̄N −3 6 1 –
Λ̄Λ – – – 0
Σ̄Σ – – – 0

Σ̄Λ + Λ̄Σ – – – 0

I = 1

N̄N 5 −2 1 –
Λ̄Λ – – – 0
Σ̄Σ – – – 0

Σ̄Λ + Λ̄Σ – – – 0

Table 5. Isospin factors of TBE potentials for N̄N scattering.

for the coupled 3S1 − 3D1 partial wave is parameterized as

V ann(3S1) = −i(C̃a
3S1

+ Ca
3S1
p2)(C̃a

3S1
+ Ca

3S1
p′2) ,

V ann(3D1 − 3S1) = −iCa
ϵ1p

′2(C̃a
3S1

+ Ca
3S1
p2) ,

V ann(3S1 − 3D1) = −iCa
ϵ1p

2(C̃a
3S1

+ Ca
3S1
p′2) ,

V ann(3D1) = −i[(Ca
ϵ1)

2 + (Ca
3D1

)2]p2p′2 , (A.37)

which is consistent with requirements from unitarity. In the expressions above, the parameters
C̃a and Ca are real. All the potentials used in the LS equation are cut off by a regulator
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function, fR(Λ) = exp[−(p6 + p′6)/Λ6], to suppress high-momentum components [38, 54]. To
explore the dependence of our results on the cutoff, we consider a range of cut-off values:
Λ =750, 800, 850, 900, 950 MeV. These values are noticeably larger than the ones required
and used in standard χEFT calculations [51, 61], but reflect the fact that we want to apply
our N̄N interaction over an extended energy range.

A.5 The results of all the TBE potentials

In section A.3, the calculation of the football diagram is described. In this section, the
potentials due to the triangle, planar box, and cross box diagrams will be given. The triangle
diagrams refer to the left triangle and right triangle diagrams. For the left triangle diagrams
in the physical basis, one has

V LeftTriangle
n̄n→n̄n =V LeftTriangle

p̄p→p̄p

=−f
2
NNπ

8f2
0

∫ d3l1

(2π)3
(l2

1−q2)⟨λ′2|λ2⟩⟨λ′1|λ1⟩
ω+,πω−,π(ω+,π+ω−,π)

− f2
ΛNK

8f2
0

∫ d3l1

(2π)3
(l2

1−q2)⟨λ′2|λ2⟩⟨λ′1|λ1⟩
ω+,Kω−,K(ω+,K+ω−,K)

− f2
ΣNK

4f2
0

∫ d3l1

(2π)3
(l2

1−q2)⟨λ′2|λ2⟩⟨λ′1|λ1⟩
ω+,Kω−,K(ω+,K+ω−,K) ,

V LeftTriangle
p̄p→n̄n =−f

2
NNπ

4f2
0

∫ d3l1

(2π)3
(l2

1−q2)⟨λ′2|λ2⟩⟨λ′1|λ1⟩
ω+,πω−,π(ω+,π+ω−,π)

− f2
ΛNK

16f2
0

∫ d3l1

(2π)3
(l2

1−q2)⟨λ′2|λ2⟩⟨λ′1|λ1⟩
ω+,Kω−,K(ω+,K+ω−,K)

+ f2
ΣNK

16f2
0

∫ d3l1

(2π)3
(l2

1−q2)⟨λ′2|λ2⟩⟨λ′1|λ1⟩
ω+,Kω−,K(ω+,K+ω−,K) . (A.38)

Transforming them into the isospin basis, the potentials are

V I=0
N̄N

=−3f2
NNπ

8f2
0

∫ d3l1
(2π)3

(l2
1−q2)⟨λ′2|λ2⟩⟨λ′1|λ1⟩

ω+,πω−,π(ω+,π+ω−,π)
− 3f2

ΛNK

16f2
0

∫ d3l1
(2π)3

(l2
1−q2)⟨λ′2|λ2⟩⟨λ′1|λ1⟩

ω+,Kω−,K(ω+,K+ω−,K)

− 3f2
ΣNK

16f2
0

∫ d3l1
(2π)3

(l2
1−q2)⟨λ′2|λ2⟩⟨λ′1|λ1⟩

ω+,Kω−,K(ω+,K+ω−,K) ,

V I=1
N̄N

= f2
NNπ

8f2
0

∫ d3l1
(2π)3

(l2
1−q2)⟨λ′2|λ2⟩⟨λ′1|λ1⟩

ω+,πω−,π(ω+,π+ω−,π)
− f2

ΛNK

16f2
0

∫ d3l1
(2π)3

(l2
1−q2)⟨λ′2|λ2⟩⟨λ′1|λ1⟩

ω+,Kω−,K(ω+,K+ω−,K)

− 5f2
ΣNK

16f2
0

∫ d3l1
(2π)3

(l2
1−q2)⟨λ′2|λ2⟩⟨λ′1|λ1⟩

ω+,Kω−,K(ω+,K+ω−,K) . (A.39)

The isospin factor for the potential due to the left triangle diagram is defined by

V LeftTriangle
N̄N

= −
f2

NBiP

32f2
0

∫ d3l1
(2π)3

(l2
1 − q2)⟨λ′2|λ2⟩⟨λ′1|λ1⟩

ω+,Pω−,P (ω+,P + ω−,P )
ILeftTriangle

N̄N→N̄N
, (A.40)

where Bi denotes the intermediate baryon. The interaction potential from the right triangle
diagrams are the same as those of the left triangle, in the non-relativistic approximation.
The isospin factors are listed in table 5. Comparing with the NN potential given by ref. [54],
one sees that the potential due to ππ exchanges satisfies the G-parity transformation rule,
as expected, while that for the KK̄ exchanges is different.
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The box diagrams include planar-box and crossed-box diagrams. For the former, the
potentials in the physical basis are

V PlanarBox
p̄p→p̄p =

− 5f4
NNπ

8

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,πω

2
−,π(ω+,π+ω−,π)

−
f2

NNπf
2
NNη

4

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,ηω

2
−,π(ω+,η+ω−,π)

−
f4

NNη

8

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,ηω

2
−,η(ω+,η+ω−,η)

− f4
ΛNK

8

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,Kω

2
−,K(ω+,K+ω−,K)

− 5f4
ΣNK

8

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,Kω

2
−,K(ω+,K+ω−,K)

− f2
ΣNKf

2
ΛNK

4

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,Kω

2
−,K(ω+,K+ω−,K)

,

V PlanarBox
p̄p→n̄n =

− f4
NNπ

2

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,πω

2
−,π(ω+,π+ω−,π)

−
f2

NNπf
2
NNη

2

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,ηω

2
−,π(ω+,η+ω−,π)

− f4
ΛNK

8

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,Kω

2
−,K(ω+,K+ω−,K)

− f4
ΣNK

8

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,Kω

2
−,K(ω+,K+ω−,K)

+ f2
ΛNKf

2
ΣNK

4

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,Kω

2
−,K(ω+,K+ω−,K)

.

(A.41)

Transforming them into the isospin basis, one has

V I=0
N̄N

=

− 9f4
NNπ

8

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,πω

2
−,π(ω+,π+ω−,π)

−
3f2

NNπf
2
NNη

4

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,ηω

2
−,π(ω+,η+ω−,π)

−
f4

NNη

8

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,ηω

2
−,η(ω+,η+ω−,η)
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− f4
ΛNK

4

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,Kω

2
−,K(ω+,K+ω−,K)

− 3f4
ΣNK

4

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,Kω

2
−,K(ω+,K+ω−,K)

,

V I=1
N̄N

=

− f4
NNπ

8

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,πω

2
−,π(ω+,π+ω−,π)

+
f2

NNπf
2
NNη

4

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,ηω

2
−,π(ω+,η+ω−,π)

−
f4

NNη

8

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,ηω

2
−,η(ω+,η+ω−,η)

− f4
ΣNK

2

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,Kω

2
−,K(ω+,K+ω−,K)

− f2
ΣNKf

2
ΛNK

2

∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,Kω

2
−,K(ω+,K+ω−,K)

.

(A.42)
For the crossed-box diagrams, the potentials are as follows

V CrossBox
p̄p→p̄p =− f4

NNπ

8

∫ d3l1
(2π)3

ω2
+,π+ω−,πω+,π+ω2

−,π

ω3
−,πω

3
+,π(ω−,π+ω+,π)

[(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩

+4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩]

−
f2

NNπf
2
NNη

4

∫ d3l1
(2π)3

ω2
+,η+ω−,πω+,η+ω2

−,π

ω3
−,πω

3
+,η(ω−,π+ω+,η)

[(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩

+4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩]

−
f4

NNη

8

∫ d3l1
(2π)3

ω2
+,η+ω−,ηω+,η+ω2

−,η

ω3
−,ηω

3
+,η(ω−,η+ω+,η)

[(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩

+4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩] ,

V CrossBox
p̄p→n̄n = f4

NNπ

2

∫ d3l1
(2π)3

ω2
+,π+ω−,πω+,π+ω2

−,π

ω3
−,πω

3
+,π(ω−,π+ω+,π)

[(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩

+4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩]

−
f2

NNπf
2
NNη

2

∫ d3l1
(2π)3

ω2
+,η+ω−,πω+,η+ω2

−,π

ω3
−,πω

3
+,η(ω−,π+ω+,η)

[(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩

+4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩] . (A.43)

Transforming them into the isospin basis, one has

V I=0
N̄N

= 3f4
NNπ

8

∫ d3l1
(2π)3

ω2
+,π+ω−,πω+,π+ω2

−,π

ω3
−,πω

3
+,π(ω−,π+ω+,π)

[(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩

+4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩]
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−
3f2

NNπf
2
NNη

4

∫ d3l1
(2π)3

ω2
+,η+ω−,πω+,η+ω2

−,π

ω3
−,πω

3
+,η(ω−,π+ω+,η)

[(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩

+4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩]

−
f4

NNη

8

∫ d3l1
(2π)3

ω2
+,η+ω−,ηω+,η+ω2

−,η

ω3
−,ηω

3
+,η(ω−,η+ω+,η)

[(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩

+4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩] ,

V I=1
N̄N

=− 5f4
NNπ

8

∫ d3l1
(2π)3

ω2
+,π+ω−,πω+,π+ω2

−,π

ω3
−,πω

3
+,π(ω−,π+ω+,π)

[(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩

+4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩]

+
f2

NNπf
2
NNη

4

∫ d3l1
(2π)3

ω2
+,η+ω−,πω+,η+ω2

−,π

ω3
−,πω

3
+,η(ω−,π+ω+,η)

[(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩

+4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩]

−
f4

NNη

8

∫ d3l1
(2π)3

ω2
+,η+ω−,ηω+,η+ω2

−,η

ω3
−,ηω

3
+,η(ω−,η+ω+,η)

[(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩

+4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩] . (A.44)

The isospin factors for planar-box and crossed-box diagrams are defined by

V PlanarBox
N̄N

=−IPlanarBox
N̄N→N̄N

f2
NBi1 P1

f2
NBi2 P2

8 ×∫ d3l1
(2π)3

(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩−4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩

ω2
+,P1

ω2
−,P2

(ω+,P1+ω−,P2)
,

V CrossBox
N̄N

=−ICrossBox
N̄N→N̄N

f2
NBi1 P1

f2
NBi2 P2

8

∫ d3l1
(2π)3

ω2
+,P1

+ω−,P2ω+,P1+ω2
−,P2

ω3
+,P1

ω3
−,P2

(ω+,P1+ω−,P2)
×

[(l2
1−q2)2⟨λ′2|λ2⟩⟨λ′1|λ1⟩+4⟨λ′2|(l1×q)·σ|λ2⟩⟨λ′1|(l1×q)·σ|λ1⟩] . (A.45)

The isospin factors are listed in table 5. In the next section, one can find the final expressions
for these potentials, after the integration has been performed. Notice that the reducible
parts of the box diagrams are not included to avoid double counting once the potential is
resummed by the LS equation. See the first two graphs in the third row of figure 10.

B The integration of loop momentum

For TBE potentials, the integration over the loop momentum in the football, left and right
triangle, planar and crossed-box diagrams needs to be dealt with [53]. For the football
diagram, the potential in eq. (A.35) can be written as

V Football
N̄N

= V Football
C ⟨λ′2|λ2⟩⟨λ′1|λ1⟩IFootball

N̄N→N̄N
. (B.1)

Here, after integration the potential V Football
C has the following form

V Football
C = 1

3072π2f4
0

[
−4m2

P − 5
6q

2 + (6m2
P + q2)

(
R

2 + ln mP

λ

)
+ w2(q)L(q)

]
, (B.2)
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where we applied the renormalization scheme MS − 1, and the divergent part is given as
R = 2

d−4 + γE − 1 − ln(4π). The latter is ignored in the numerical calculation. λ is the
renormalization scale introduced by dimensional regularization. It is absorbed into the
contact terms. The subscript ‘P ’ denotes the relevant pseudoscalar meson appearing in the
intermediate states. The functions ω and L are given by

w(q;m1,m2) =
1
q

√
(q2 + (m1 +m2)2)(q2 + (m1 −m2)2) ,

L(q;m1,m2) =
w(q)
2q ln (qw(q) + q2)2 − (m2

1 −m2
2)2

4m1m2q2 . (B.3)

For equal mass cases, they can be simplified as

w(q;m,m) =
√
q2 + 4m2 ,

L(q;m,m) = w(q)
q

ln w(q) + q

2m (B.4)

For the triangle diagrams, the potential in eq. (A.40) can be written as

V Triangle
N̄N

= f2
NBiPV

Triangle
C ⟨λ′2|λ2⟩⟨λ′1|λ1⟩ITriangle

N̄N→N̄N
, (B.5)

where one has,

V Triangle
C = − 1

768π2f2
0

[
−4m2

P − 13
3 q

2 + (16m2
P + 10q2)L(q)

+(18m2
P + 5q2)

(
R+ 2 ln mP

λ

)]
. (B.6)

For the planar box diagrams, the potential can be written as

V PlanarBox
N̄N

= f2
NBi1 P1f

2
NBi2 P2

(
V PlanarBox

C ⟨λ′2|λ2⟩⟨λ′1|λ1⟩

+V PlanarBox
S ⟨λ′2|σi

2|λ2⟩⟨λ′1|σi
1|λ1⟩

+V PlanarBox
T ⟨λ′2|σ2 · q|λ2⟩⟨λ′1|σ1 · q|λ1⟩

)
IPlanarBox

N̄N→N̄N
, (B.7)

where one has

V PlanarBox
C = 1

192π2

[
5
3q

2 +
(m2

P1
−m2

P2
)2

q2 + 16(m2
P1 +m2

P2)

+ (23q2 + 45(m2
P1 +m2

P2))
(
R+ 2 ln

√
mP1mP2

λ

)
+
m2

P1
−m2

P2

q4 (12q4 + (m2
P1 −m2

P2)
2 − 9q2(m2

P1 +m2
P2)) ln

mP1

mP2

+ 2
w2(q)

(
23q4 −

(m2
P1

−m2
P2
)4

q4 + 56(m2
P1 +m2

P2)q
2

+8
m2

P1
+m2

P2

q2 (m2
P1 −m2

P2)
2 + 2(21m4

P1 + 22m2
P1m

2
P2 + 21m4

P2

)
L(q)

]
,

V PlanarBox
T = − 1

8π2

[
L(q)− 1

2 −
m2

P1
−m2

P2

2q2 ln mP1

mP2
+ R

2 + ln
√
mP1mP2

λ

]

= − 1
q2V

PlanarBox
S , (B.8)

– 33 –



J
H
E
P
0
8
(
2
0
2
4
)
2
0
8

where P1 and P2 denote the two exchanged pseudoscalar mesons. For the crossed-box
diagrams, the potential can be written as

V CrossBox
N̄N

= f2
NBi1 P1f

2
NBi2 P2

(
V CrossBox

C ⟨λ′2|λ2⟩⟨λ′1|λ1⟩

+V CrossBox
S ⟨λ′2|σi

2|λ2⟩⟨λ′1|σi
1|λ1⟩

+V CrossBox
T ⟨λ′2|σ2 · q|λ2⟩⟨λ′1|σ1 · q|λ1⟩

)
ICrossBox

N̄N→N̄N
, (B.9)

where one has

V CrossBox
C = −V PlanarBox

C ,

V CrossBox
T = − 1

q2V
CrossBox

S = V PlanarBox
T . (B.10)
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