001     1030905
005     20250203133206.0
024 7 _ |a 10.1021/acsphotonics.4c00349
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05499
|2 datacite_doi
024 7 _ |a WOS:001289126200001
|2 WOS
037 _ _ |a FZJ-2024-05499
082 _ _ |a 530
100 1 _ |a Zhou, Lanqing
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Resonant Raman Scattering of Surface Phonon Polaritons Mediated by Excitons in WSe 2 Films
260 _ _ |a Washington, DC
|c 2024
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1727264684_26202
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Surface phonon polaritons propagating along interfaces of polar dielectrics coexist with excitons in many van der Waals heterostructures, so understanding their mutual interactions is of great interest. Here, we investigate the contribution of type I surface phonon polariton (SPhP) of hBN to the low-temperature resonant-Raman spectra of hBN/WSe2 heterostructures. When the laser energy is such that the scattered photons have energy close to that of the WSe2 excitons, the resonantly enhanced Raman signal enables the characterization of even one monolayer-thick hBN. We are able to explain the signal using transfer matrix method simulations of SPhP dispersions, provided that we assume the Raman scattering to be momentum nonconserving, as could be the case if localized WSe2 exciton states participated in the process. However, we cannot exclude the contribution of the TO and ZO phonons to the measured signal. We further show that resonant Raman scattering from SiO2 SPhP can also be mediated by WSe2.
536 _ _ |a 5224 - Quantum Networking (POF4-522)
|0 G:(DE-HGF)POF4-5224
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wirth, Konstantin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bui, Minh N.
|0 P:(DE-Juel1)176246
|b 2
700 1 _ |a Rani, Renu
|0 P:(DE-Juel1)190847
|b 3
|u fzj
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 4
|u fzj
700 1 _ |a Taubner, Thomas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kardynal, Beata
|0 P:(DE-Juel1)145316
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acsphotonics.4c00349
|g Vol. 11, no. 8, p. 3079 - 3086
|0 PERI:(DE-600)2745489-7
|n 8
|p 3079 - 3086
|t ACS photonics
|v 11
|y 2024
|x 2330-4022
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1030905/files/zhou-et-al-2024-resonant-raman-scattering-of-surface-phonon-polaritons-mediated-by-excitons-in-wse2-films.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1030905/files/zhou-et-al-2024-resonant-raman-scattering-of-surface-phonon-polaritons-mediated-by-excitons-in-wse2-films.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1030905/files/zhou-et-al-2024-resonant-raman-scattering-of-surface-phonon-polaritons-mediated-by-excitons-in-wse2-films.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1030905/files/zhou-et-al-2024-resonant-raman-scattering-of-surface-phonon-polaritons-mediated-by-excitons-in-wse2-films.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1030905/files/zhou-et-al-2024-resonant-raman-scattering-of-surface-phonon-polaritons-mediated-by-excitons-in-wse2-films.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1030905
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176246
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)190847
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)125588
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145316
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5224
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS PHOTONICS : 2022
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS PHOTONICS : 2022
|d 2024-12-19
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21