001030920 001__ 1030920
001030920 005__ 20250203133206.0
001030920 0247_ $$2doi$$a10.1109/JSTARS.2024.3457231
001030920 0247_ $$2ISSN$$a1939-1404
001030920 0247_ $$2ISSN$$a2151-1535
001030920 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05513
001030920 0247_ $$2WOS$$aWOS:001339129900006
001030920 037__ $$aFZJ-2024-05513
001030920 082__ $$a520
001030920 1001_ $$00000-0003-0111-0861$$aPato, Miguel$$b0
001030920 245__ $$aPhysics-based Machine Learning Emulator of At-sensor Radiances for Solar-induced Fluorescence Retrieval in the O-A Absorption Band
001030920 260__ $$aNew York, NY$$bIEEE$$c2024
001030920 3367_ $$2DRIVER$$aarticle
001030920 3367_ $$2DataCite$$aOutput Types/Journal article
001030920 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1732699684_20481
001030920 3367_ $$2BibTeX$$aARTICLE
001030920 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001030920 3367_ $$00$$2EndNote$$aJournal Article
001030920 520__ $$aThe successful operation of airborne and space-based spectrometers in recent years holds the promise to map solar-induced fluorescence (SIF) accurately across the globe. Machine learning (ML) can play an important role in this effort, but its application to SIF retrieval methods is in part hindered by the need for time-consuming radiative transfer modelling to account for atmospheric effects. In this work, we address this difficulty and develop a fast and accurate physics-based ML emulator of at-sensor radiances around the O 2 -A absorption band for the space-based DESIS and the airborne HyPlant spectrometers. Different ML models are trained on an extensive set of simulated spectra encompassing a wide range of atmosphere, geometry, surface and sensor configurations. A fourth-degree polynomial model is found to perform best, presenting errors at or below 10% of typical SIF at-sensor radiances and a prediction time per sample spectrum of 10-20 μ s. Using data acquired with the HyPlant instrument, the proposed model is also shown to be able to match very closely the measured spectra. We illustrate how to improve further the accuracy of the emulator and how to generalize it to other sensors using the particular case of ESA's FLEX space mission. Our findings suggest that physics-based emulators can be efficiently used for the development of ML-based SIF retrieval methods by generating large training data sets in short time and by enabling a fast simulation step for self-supervised retrieval schemes.
001030920 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001030920 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x1
001030920 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001030920 7001_ $$0P:(DE-Juel1)188104$$aBuffat, Jim$$b1$$ufzj
001030920 7001_ $$0P:(DE-HGF)0$$aAlonso, Kevin$$b2
001030920 7001_ $$00000-0001-9310-2337$$aAuer, Stefan$$b3
001030920 7001_ $$0P:(DE-HGF)0$$aCarmona, Emiliano$$b4
001030920 7001_ $$0P:(DE-Juel1)188300$$aMaier, Stefan$$b5$$ufzj
001030920 7001_ $$0P:(DE-HGF)0$$aMüller, Rupert$$b6
001030920 7001_ $$0P:(DE-Juel1)162306$$aRademske, Patrick$$b7$$ufzj
001030920 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b8
001030920 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b9
001030920 770__ $$z2151-1535
001030920 773__ $$0PERI:(DE-600)2457423-5$$a10.1109/JSTARS.2024.3457231$$gp. 1 - 10$$p18566 - 18576$$tIEEE journal of selected topics in applied earth observations and remote sensing$$v17$$x1939-1404$$y2024
001030920 8564_ $$uhttps://juser.fz-juelich.de/record/1030920/files/Physics-Based_Machine_Learning_Emulator_of_at-Sensor_Radiances_for_Solar-Induced_Fluorescence_Retrieval_in_the_O_2-A_Absorption_Band.pdf$$yOpenAccess
001030920 909CO $$ooai:juser.fz-juelich.de:1030920$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001030920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188104$$aForschungszentrum Jülich$$b1$$kFZJ
001030920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188300$$aForschungszentrum Jülich$$b5$$kFZJ
001030920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162306$$aForschungszentrum Jülich$$b7$$kFZJ
001030920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b8$$kFZJ
001030920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b9$$kFZJ
001030920 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001030920 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
001030920 9141_ $$y2024
001030920 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001030920 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001030920 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001030920 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-25
001030920 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001030920 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-25
001030920 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-19
001030920 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-19
001030920 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:38:59Z
001030920 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:38:59Z
001030920 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:38:59Z
001030920 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-19
001030920 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-19
001030920 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-19
001030920 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE J-STARS : 2022$$d2024-12-19
001030920 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE J-STARS : 2022$$d2024-12-19
001030920 920__ $$lyes
001030920 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x0
001030920 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
001030920 980__ $$ajournal
001030920 980__ $$aVDB
001030920 980__ $$aI:(DE-Juel1)IAS-8-20210421
001030920 980__ $$aI:(DE-Juel1)IBG-2-20101118
001030920 980__ $$aUNRESTRICTED
001030920 9801_ $$aFullTexts