001     1030920
005     20250203133206.0
024 7 _ |a 10.1109/JSTARS.2024.3457231
|2 doi
024 7 _ |a 1939-1404
|2 ISSN
024 7 _ |a 2151-1535
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-05513
|2 datacite_doi
024 7 _ |a WOS:001339129900006
|2 WOS
037 _ _ |a FZJ-2024-05513
082 _ _ |a 520
100 1 _ |a Pato, Miguel
|0 0000-0003-0111-0861
|b 0
245 _ _ |a Physics-based Machine Learning Emulator of At-sensor Radiances for Solar-induced Fluorescence Retrieval in the O-A Absorption Band
260 _ _ |a New York, NY
|c 2024
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1732699684_20481
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The successful operation of airborne and space-based spectrometers in recent years holds the promise to map solar-induced fluorescence (SIF) accurately across the globe. Machine learning (ML) can play an important role in this effort, but its application to SIF retrieval methods is in part hindered by the need for time-consuming radiative transfer modelling to account for atmospheric effects. In this work, we address this difficulty and develop a fast and accurate physics-based ML emulator of at-sensor radiances around the O 2 -A absorption band for the space-based DESIS and the airborne HyPlant spectrometers. Different ML models are trained on an extensive set of simulated spectra encompassing a wide range of atmosphere, geometry, surface and sensor configurations. A fourth-degree polynomial model is found to perform best, presenting errors at or below 10% of typical SIF at-sensor radiances and a prediction time per sample spectrum of 10-20 μ s. Using data acquired with the HyPlant instrument, the proposed model is also shown to be able to match very closely the measured spectra. We illustrate how to improve further the accuracy of the emulator and how to generalize it to other sensors using the particular case of ESA's FLEX space mission. Our findings suggest that physics-based emulators can be efficiently used for the development of ML-based SIF retrieval methods by generating large training data sets in short time and by enabling a fast simulation step for self-supervised retrieval schemes.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Buffat, Jim
|0 P:(DE-Juel1)188104
|b 1
|u fzj
700 1 _ |a Alonso, Kevin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Auer, Stefan
|0 0000-0001-9310-2337
|b 3
700 1 _ |a Carmona, Emiliano
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Maier, Stefan
|0 P:(DE-Juel1)188300
|b 5
|u fzj
700 1 _ |a Müller, Rupert
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rademske, Patrick
|0 P:(DE-Juel1)162306
|b 7
|u fzj
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 8
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 9
770 _ _ |z 2151-1535
773 _ _ |a 10.1109/JSTARS.2024.3457231
|g p. 1 - 10
|0 PERI:(DE-600)2457423-5
|p 18566 - 18576
|t IEEE journal of selected topics in applied earth observations and remote sensing
|v 17
|y 2024
|x 1939-1404
856 4 _ |u https://juser.fz-juelich.de/record/1030920/files/Physics-Based_Machine_Learning_Emulator_of_at-Sensor_Radiances_for_Solar-Induced_Fluorescence_Retrieval_in_the_O_2-A_Absorption_Band.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1030920
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188104
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)188300
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)162306
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129388
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129394
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:38:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:38:59Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-03T10:38:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE J-STARS : 2022
|d 2024-12-19
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE J-STARS : 2022
|d 2024-12-19
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21