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Abstract
The prediction of the chronological age of a deceased individual at time of death can provide important information in 
case of unidentified bodies. The methodological possibilities in these cases depend on the availability of tissues, whereby 
bones are preserved for a long time due to their mineralization under normal environmental conditions. Age-dependent 
changes in DNA methylation (DNAm) as well as the accumulation of pentosidine (Pen) and D-aspartic acid (D-Asp) 
could be useful molecular markers for age prediction. A combination of such molecular clocks into one age prediction 
model seems favorable to minimize inter- and intra-individual variation. We therefore developed (I) age prediction models 
based on the three molecular clocks, (II) examined the improvement of age prediction by combination, and (III) investi-
gated if samples with signs of decomposition can also be examined using these three molecular clocks. Skull bone from 
deceased individuals was collected to obtain a training dataset (n = 86), and two independent test sets (without signs of 
decomposition: n = 44, with signs of decomposition: n = 48). DNAm of 6 CpG sites in ELOVL2, KLF14, PDE4C, RPA2, 
TRIM59 and ZYG11A was analyzed using massive parallel sequencing (MPS). The D-Asp and Pen contents were analyzed 
by high performance liquid chromatography (HPLC). Age prediction models based on ridge regression were developed 
resulting in mean absolute errors (MAEs)/root mean square errors (RMSE) of 5.5years /6.6 years (DNAm), 7.7 years /9.3 
years (Pen) and 11.7 years /14.6 years (D-Asp) in the test set. Unsurprisingly, a general lower accuracy for the DNAm, 
D-Asp, and Pen models was observed in samples from decomposed bodies (MAE: 7.4–11.8 years, RMSE: 10.4–15.4 
years). This reduced accuracy could be caused by multiple factors with different impact on each molecular clock. To 
acknowledge general changes due to decomposition, a pilot model for a possible age prediction based on the decomposed 
samples as training set improved the accuracy evaluated by leave-one-out-cross validation (MAE: 6.6–12 years, RMSE: 
8.1–15.9 years). The combination of all three molecular age clocks did reveal comparable MAE and RMSE results to the 
pure analysis of the DNA methylation for the test set without signs of decomposition. However, an improvement by the 
combination of all three clocks was possible for the decomposed samples, reducing especially the deviation in case of 
outliers in samples with very high decomposition and low DNA content. The results demonstrate the general potential in 
a combined analysis of different molecular clocks in specific cases.
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Introduction

Postmortem chronological age prediction of an individual 
can be crucial in determining the identity of a deceased. 
Methodological options for age prediction depend on the 
extent of postmortem changes and the availability of tis-
sues; the initial situation can range from the presence of 
a complete corpse to the presence of only some pieces of 
bone. Teeth and bones are the most resistant human tissues 
that can withstand harsh conditions such as degradation and 
putrefaction due to their high content of inorganic substance 
[1]. Therefore, they are the most relevant sample types for 
forensic practice in these cases.

Conventional methods for chronological age prediction 
are based on the examination of physiological and degen-
erative changes (especially in dental and skeletal structures) 
during life [2]. However, in adulthood the accuracy of these 
methods may be low and cannot be used when morpho-
logical information is limited, e.g., in cases with only body 
parts or fragments of bones [2]. In the last decade, numerous 
new approaches based on the use of known age-dependent 
molecular changes have expanded the repertoire of age pre-
diction methods [3]. Among the most interesting approaches 
for forensic age prediction are DNA methylation (DNAm) 
and post-translational protein modifications, such as accu-
mulation of D-aspartic acid (D-Asp), and pentosidine (Pen) 
in long-living proteins.

Skull bones, like other bones in the body, are composed 
of both inorganic and organic tissue. The bone matrix con-
sists of around 35% organic and 65% inorganic constituents. 
The inorganic components mainly include hydroxyapatite 
crystals, but also potassium, chlorine, iron, magnesium and 
carbonate [4, 5]. These crystals provide rigidity and hard-
ness to bone tissue, contributing to its compressive strength 
[5]. The organic matrix of bone consists mainly of collagen 
fibers (approx. 90%), which provide tensile strength and 
flexibility to bone tissue. The remaining components are 
non-collagenous proteins, such as osteonectin, osteocalcin, 
sialoprotein, phosphoproteins, glycoproteins, proteogly-
cans, albumin and others [4]. Different processes of bone 
protein modifications can result from enzymatic or non-
enzymatic processes [5, 6]. The enzymatic process involves 
the activation of lysyl oxidase, leading to the formation of 
immature and mature crosslinks that stabilize the collagen 
fibrils. Two types of non-enzymatic processes result in 
an accumulation of advanced glycation end products and 
D-aspartic acid in bone proteins. These bone protein modi-
fications are age-related and can affect the mechanical prop-
erties of bone [5].

The accumulation of D-Asp with age is the result of 
spontaneous nonenzymatic conversion of L-asparagine and 
L-aspartic acid into its D-forms (for details, see [7]). Age 

prediction based on the D-Asp content in dentine, a very 
stable and bradytrophic tissue, revealed accurate estimates 
of 2.19–2.93 years mean absolute errors (MAE) [8–13]. 
This approach also works for more complex and heterog-
enous tissues with higher turnover, such as bone. However, 
for other tissues than dentine, the accuracy of the method is 
significantly lower, as long as suitable proteins are not puri-
fied and protein mixtures are analyzed (for details see [3]). 
Pen is an advanced glycation end product that accumulates 
as a fluorescent crosslink between arginine and lysine in dif-
ferent proteins like collagen [14]. Pathological metabolic 
conditions, such as long-lasting hyperglycemic states or 
renal failure, may result in elevated Pen levels [14]. Never-
theless, the analysis of Pen can be used for age estimation in 
cases in which confounding factors can be excluded or as an 
additional parameter, e.g. in combination with D-Asp [15].

Various cell types within the bone matrix are present to 
maintain bone structure, function, and repair. Osteoblasts 
are responsible for producing the organic matrix that serves 
as the foundation for mineral deposition and therefore are 
vital for growth and repair, ensuring the integrity and resil-
ience of bone tissue. Derived from osteoblasts, osteocytes 
nestled within the bone matrix, monitor remodeling pro-
cesses, and respond to mechanical stresses, playing a cru-
cial role in maintaining bone metabolism [16]. In contrast, 
osteoclasts are involved in bone resorption by breaking 
down old or damaged bone tissue, releasing vital calcium 
and phosphate ions into the circulation to maintain mineral 
balance [17]. To allow these specific functions, epigenetic 
mechanisms such as DNAm play a role in the regulation 
of developmental processes, differentiation, and function in 
bone cells, too [18–20]. In addition to these primary cells, 
mesenchymal stem cells in the bone marrow serve tissue 
regeneration purposes, and endothelial cells form the intri-
cate network of blood vessels within bones and assist in 
remodeling and repair processes [16]. Blood cells can also 
be seen as part of the overall cell type composition of bones. 
Studies revealed age-related DNAm alterations in all cells 
and tissues including bones [21, 22]. These modifications 
can influence gene expression patterns and contribute to 
genomic instability and the onset and progression of numer-
ous diseases [23–27].

Various age-related DNAm markers, with increased or 
decreased methylation at specific cytosine-guanine (CpG) 
sites, have already been identified [21]. Based on these find-
ings, several mathematical models for chronological age 
prediction in forensic settings have been proposed for vari-
ous tissues and body fluids, including teeth and bone, obtain-
ing MAE of 3–5 years (for details see reviews [28–30]).

Each of these parameters suggested for molecular age 
prediction exhibits limitations due to its specific biologi-
cal context, including tissue-specific differences, individual 
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(stochastic) changes, and many endogenous and exoge-
nous factors, which could influence the degree of DNAm 
and accumulation of D-Asp and Pen, respectively [14, 
30–32]. The combined analysis of all three molecular 
clocks addresses different biological levels and, therefore 
may compensate for the effects of various influencing fac-
tors on the accuracy of age estimation, especially in adult-
hood. Approaches combining multiple biological molecular 
clocks have already been tested and partially improved 
age prediction accuracy [33–36]. Data from a pilot study 
performing a parallel analysis of D-Asp, Pen, and DNAm 
revealed age-dependent changes in bone tissue (skull) and 
thereby indicated a potential for age prediction [37]. Within 
that study, the regions ELOVL2, KLF14, PDE4C, RPA2, 
TRIM59, and ZYG11A, showed a high correlation with age 
in bone (ρ 0.9–0.98). The age dependency of these markers 
was also seen in bone samples examined in other studies, 
e.g. [38, 39].

Within this study, we analyzed D-Asp and Pen as well 
as DNAm at multiple CpG sites in the six selected regions, 
in skull samples from deceased individuals without and 
with signs of decomposition. We developed and evaluated 
ridge regression models for age prediction and investigated 
the impact of postmortem changes on age prediction accu-
racy in samples ranging from early to advanced stages of 
decomposition.

Materials and methods

Actions taken to avoid contamination

The samples were treated with appropriate measures from 
collection to analysis (contamination protection through 
appropriate rooms, gloves, masks, gowns and clean prepa-
ration equipment, ‘human DNA-free’ tubes, pipette tips 
and reagents). The surfaces of the bones were cleaned with 
Biocidal and appropriate negative controls were carried out 
from the DNA extraction onwards as well as for the HPLC 
to ensure that no contamination had occurred as a result of 
the washing protocol.

Bone sample collection and preparation

Samples of skull bone (Os parietale) were collected from 
190 individuals during autopsy (0 to 96 years, 55 females 
and 135 males), sampling a piece from the left parietal bone, 
close to the usual saw cut for skull opening. In order to avoid 
heat exposure and because of the extremely small thickness 
of the calotte in the sampling area, the cancellous bone 
between the tabula externa and interna was not removed, 
so that the samples covered the entire bone cross-section. 

Sample information can be found in Suppl. Table S1A. The 
state of decomposition (d-score) was defined during autopsy 
by forensic pathologists based on morphological character-
istics. The decomposition scores of head, trunk and extremi-
ties were evaluated (details in Suppl. Table S1B) and total 
body decomposition scores were calculated by summariz-
ing the scores of those regions leading to a minimum score 
of 3 for corpses without any signs of decomposition and 
to a maximum score of 22 in highly decomposed bodies 
as described by Megyesi et al. [40]. Dataset 1 (n = 98) and 
dataset 2 (n = 44) contain only samples from individuals 
without signs of decomposition. Dataset 3 (n = 48) consists 
of all samples with early to advanced signs of decomposi-
tion. In all datasets, collection of samples from individu-
als over the whole age range was anticipated. However that 
was limited especially for individuals below 18 and for 
decomposed bodies. The processing of all three datasets 
was done independently to allow the use of split datasets 
for model training and independent testing (see below). Soft 
tissue was mechanically removed with a sterile scalpel and 
bone samples were sliced into approx. 1 × 1 × 0.5 cm large 
fragments. The samples were pulverized with a tube mill 
at 17.000 rpm (Ika Tube Mill Control, Staufen, Germany). 
The resulting powder was washed in distilled water, 15% 
sodium chloride, 2% sodium dodecyl sulfate, and ethanol/
ether (vol. 3:1), respectively, lyophilized by a freeze-drying 
system (Christ, Osterode am Harz, Germany) and stored at 
-80 °C until further analysis.

Determination of the D-Asp content by analysis of 
D- and L-aspartic acid

From each sample, 1 mg of bone powder was hydrolyzed 
for 6 h with 1 mL of 6 N HCl at 100 °C. D-aspartic acid and 
L-aspartic acid were analyzed by high-performance liquid 
chromatography (HPLC; 1100 Series and 1260 Infinity II, 
Agilent, CA, USA) as described by Becker et al. [33] with 
minor modification (shortened gradient: 47 min). Samples 
were dissolved in 1 mL sample buffer (0.01  M HCl with 
1.5 mM sodium azide and 0.03 mM L-homo-arginine). 
For HPLC analysis, a C18 column (Hypersil BDS C18, 
250 × 3  mm, particle size 5  μm, Thermo Fisher Scientific 
(TFS), Waltham, MA, USA) was used as stationary phase. 
The mobile phase included eluents A (23 mM sodium ace-
tate, 1.5 mM sodium azide, and 1 mM EDTA) and B (92.3% 
methanol, 7.7% acetonitrile). The amino acid enantiomers 
were detected by a gradient over a period of 49 min at a con-
stant flow rate of 0.56 mL/min. Amino acids were detected 
at an excitation wavelength of λ = 230 nm and a detection 
wavelength of λ = 445 nm. D- aspartic acid (D) and L-aspar-
tic acid (L) were identified by their retention times. The total 
content of D-Asp was expressed as ln((1 + D/L)/(1 – D/L)).
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approach and information on genomic position, primer 
sequences, and concentrations can be found in the Suppl. 
Table S2. PCR was performed using 7.5 µL PyroMark Mas-
ter Mix (Qiagen), 1.5 µL Coral Load (Qiagen), 0.5 µg BSA 
(TFS), 1.5 µL of the multiplex primer mix, 4µL of bisulfite 
converted DNA, and water ad 15 µL. Cycling was carried 
under the following conditions: 10 min at 95 ºC; 15 cycles: 
45 s at 98 ºC, 30 s at 54 ºC, 30 s at 72 ºC; 25 cycles: 45 s at 
98 ºC, 30 s at 62 ºC, 30 s at 72 ºC; final elongation for 10 min 
at 72 ºC on the MJ Research PTC-200 (BioRad, Hercules, 
CA, USA). PCR products were cleaned using 1.9x magnetic 
beads (GE Healthcare, Little Chalfont, UK), which were 
prepared according to [42]. PCR for adapter addition was 
carried out in a 12 µL-volume using 1 µL of PCR product, 
6 µL NEBNext Ultra II Q5 Master Mix (New England Bio-
labs, Ipswich, MA, USA), 5 pmol of Nextera XT i5- and i7 
index primer each and 2.25 µL of DNA-free water under 
the following conditions: 30 s at 98 ºC; 6 cycles: 10 s at 98 
ºC, 30 s at 62 ºC, 45 s at 65 ºC; final elongation for 5 min 
at 65 ºC. PCR products were cleaned twice using 1.6x of 
the prepared magnetic beads and then quantified using the 
dsDNA high-sensitivity Qubit Quantification Kit (TFS). 
PCR products were equimolar pooled and the final 11pM 
library 2 × 150  bp sequenced on a MiSeq FGx (Verogen, 
San Diego, CA, USA) using the micro, nano, and ‘normal 
size’ 300 bp v2 kits (Illumina, San Diego, CA, USA).

The FastQ files were quality checked and 5′ and 3′ 
trimmed (TrimGalore v0.4.3 [43] (including the FastQC 
package)). The paired-end reads were merged (PEAR 
v0.9.10 [44]) and aligned to the human reference hg19 
(samtools implemented in the biscuit v0.2.2 package [45]). 
CpG as well as non-CpG (i.e. CHH and CHG) DNA meth-
ylation (DNAm) values were extracted to obtain the DNAm 
values at the age-dependent positions as well as to check 
the bisulfite conversion efficiency (MethylDackel v0.2.1 
[46]). The anticipated minimal coverage (merged reads) of 
1000 was obtained for all samples, except one sample of a 
decomposed bone with a coverage of 600 merged reads for 
all markers.

Data analysis and statistical evaluation

Data analysis and visualization was performed using Jupy-
terLab 3.4.4 (Anaconda Navigator v2.3.1) with Python 3.9 
and the analysis packages pandas v1.4.4, pingouin v0.5.2, 
seaborn v0.11.2. The relationship between chronological 
age and the accumulation of D-Asp, Pen and DNAm was 
tested by rank correlation, and the corresponding Spear-
man correlation coefficients (ρ) were determined. For out-
lier detection, the Mahalanobis distance was determined 
to detect outliers for the different CpG positions, Pen, as 

Determination of pentosidine content

20  mg of bone powder per sample were hydrolyzed with 
1 mL of 6 N HCl at 110 °C for 18 h. After drying, 1 mL 
of 0.01 M heptafluorobutyric acid (HFBA) was added. The 
solution was filtered through syringe filters (Ø 25 mm and 
0.45 μm pore diameter). The dried samples were dissolved 
in 200 µL of 0.01 M HFBA. Analyzes were performed by 
HPLC (1100 Series). The stationary phase was a semi-
preparative column (Onyx™ Monolithic SemiPrep C18, 
100 × 4.6  mm, Phenomenex, Torrance, CA, USA). The 
mobile phase consisted of eluents A (40 mM NaH2PO4, 1.5 
mM sodium azide, 0.1% HFBA, pH = 2.70) and B (45% 
methanol, 45% acetonitrile, 10% H2O) based on Heems et 
al. [41]. A total of 10 µL of each sample was injected into 
the HPLC system. Samples were detected over a period of 
28 min using a linear gradient followed by a washing pla-
teau (100% eluent B) of 6 min. The flow rate was constant 
at 1 mL/min and the column temperature at 40 °C. Pento-
sidine (Pen) was measured at an excitation wavelength of 
λ = 335 nm and a detection wavelength of λ = 385 nm. The 
signal of Pen was identified by its retention time. The Pen 
content was expressed as (area of Pen [ - ])/(bone powder 
[mg])

Analysis of DNA methylation

DNA extraction and bisulfite conversion

Per sample up to 150 mg of bone powder were decalcified 
and lysed according to the Supplementary Protocol from 
Qiagen: Extraction of DNA from bone or teeth using the 
EZ1 DNA Investigator Kit (June 2016; Qiagen, Hilden, 
Germany). DNA extraction was performed according to 
the “Large-Volume Protocol” of the EZ1 DNA Investigator 
Kit and the EZ1 Advanced XL extraction robot (Qiagen). 
DNA was eluted in 100 µL elution buffer. DNA was quan-
tified using the PowerQuant System (Promega, Madion, 
WI, USA). The quantity of DNA for further analysis was 
assessed on the longer 294 bp fragment, and DNA quality 
by evaluation of degradation (84 bp short fragment/ 294 bp 
long fragment). 200 ng of DNA (when possible) were bisul-
fite converted using single column and 96well plate-based 
EZ DNA Methylation Gold Kits (Zymo Research Europe, 
Freiburg, Germany). DNA was eluted in 15 µL DNA-free 
water and roughly quantified using the ssDNA Quantifica-
tion Kit and Qubit 2.0 and Flex (both TFS).

Marker amplification and massive parallel sequencing

Parts of the genomic regions ELOVL2, KLF14, PDE4C, 
RPA2, TRIM59 and ZYG11A were amplified in a multiplex 
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LN((1 + D/L)/(1-D/L))), Pen (nmol/mg) and the DNAm (%) 
from the regions ELOVL2, KLF14, PDE4C, RPA2, TRIM59, 
and ZYG11A (Fig. 1).

As expected from the pilot study, an accumulation of 
Pen and D-Asp with increasing age was observed in bone 
samples, resulting in Spearman’s ρ-D-Asp = 0.86, 95%, CI: 
0.79–0.9, and ρPen = 0.92, 95% CI: 0.79–0.9 in dataset 1. 
In the case of eight samples of very young individuals, Pen 
determination was not possible as the Pen accumulation did 
not reach the analytical threshold. The Spearman’s ρ was 
also calculated for the CpG positions analyzed, leading to 
the selection of the final CpG positions within the amplicon 
for further analysis: ELOVL2_8 (ρ = 0.93, 95% CI: 0.79–
0.9), KLF14_3 (ρ = 0.87, 95% CI: 0.81–0.91) PDE4C_17 
(ρ = 0.9, 95% CI: 0.85–0.93), RPA2_3 (ρ = 0.91, 95% CI: 
0.87–0.94), TRIM59_7 (ρ = 0.9, 95% CI: 0.86–0.93), and 
ZYG11A_18 (ρ = 0.87, 95% CI: 0.82–0.91). Also, other 
CpG positions in the same amplicons showed ρ-values 
above 0.8 and could also be useful for age prediction (data 
not shown). Applying the Mahalanobsis distance at a chi2 
level of 0.95, revealed data points with a higher divergence 
from the center point (Suppl. Fig. S1). All deviating samples 
(in 17 individuals), except one (4 years, RPA2_3) were over 
60 years old with four individuals having deviating samples 
at least at three markers. Most of the samples with greater 
divergence were detected in PDE4C_17 (n = 7). However, 
the occurrence of single outliers can increase in case of 
markers with a very high age correlation, as lower inter-
individual differences can lead to more values identified as 
outlier.

Independent datasets with samples from 
individuals without and with signs of 
decomposition

In addition to bone samples from individuals without signs 
of decomposition on which an age prediction model will 
be build (see section below), two additional datasets were 
collected for further evaluation. An independent dataset 
2 (n = 44) with samples from individuals without signs of 
decomposition was collected to verify the observed age-
dependent changes (Fig. 2). Additionally, 48 samples from 
individuals with low to strong decomposition (cf. stag-
ing in Material and Methods) were included in the study 
to determine whether and how age-dependent changes are 
also reflected in these challenging samples (dataset 3). The 
observed accumulation of Pen and DAsp was detectable in 
the test dataset (dataset 2) as in decomposed samples (data-
set 3); however, with differences in the degree of correlation 
(test dataset: ρ = 0.90 (Pen), ρ = 0.70 (DAsp); decomposed 
dataset: ρ = 0.68 (Pen), ρ = 0.59 (D-Asp)) (Fig.  2). The 
lower ρ values are due to a higher scattering of the values 

well as D-Asp outside the expected chi² distribution (cutoff: 
0.95).

Development of age prediction models

Development and evaluation of the age prediction models 
was done using julearn 0.3.1 with pandas 2.1.4, sklearn 
1.3.2, numpy 1.24.4 and scipy 1.9.1 was used for develop-
ment and evaluation of the age prediction models.

Development and evaluation of the age prediction 
models

Age prediction ridge regression models that included the dif-
ferent molecular markers individually (DNAm, D-Asp, Pen) 
as well as combinations (D-Asp + Pen, D-Asp + DNAm, 
Pen + DNAm, and D-Asp + Pen + DNAm) were built on a 
training set with individuals of dataset 1 equal to or above 
18 years (n = 86, 18 to 96 years) and z-score pre-process-
ing. In the first step, the best alpha value (L2 penalty) was 
determined using hyperparameter tuning (5-fold cross-
validation (CV)). The final value of alpha = 5 was chosen 
for all feature combinations. 10-times 10-fold CV was used 
for development and first evaluation of model performance. 
The final model for the 86 training samples was evaluated 
in an independent test set (n = 44, 19 to 96 years). An addi-
tional evaluation was performed using samples with signs 
of decomposition (n = 48, 20 to 90 years). Model creation 
using julearn is based on the implementation of the sklearn 
function run_cross_validation and directly includes the 
CV approach. The mean absolute errors (MAE), root mean 
square errors (RMSE), and R value were determined for a 
model evaluation.

Development and evaluation of a pilot age 
prediction model specific for decomposed samples

To obtain first insights, if the development of an age pre-
diction model using decomposed samples for training, 
and therefore including the heterogeneity of post-mortem 
effects, could be beneficial, a pilot ridge regression model 
was developed and evaluated with leave-one-out CV 
(LOOCV) using dataset 3 (decomposed samples, n = 48).

Results

Correlation of D-Asp, Pen and DNAm markers with 
age in skull bone samples

The samples from dataset 1 (n = 98, without signs of decom-
position) were analyzed for total D-Asp (described as 
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Fig. 1  Results of the selected age-dependent protein and DNA meth-
ylation markers in training data (n = 98; cf. Suppl. Table S1A). Accu-
mulation of D-Asp (A) and Pen (B). In case of Pen, values are missing 

due to detection limits for most of the under 15 years old. (C) DNA 
methylation levels for the final selected CpG sites from six amplicon 
regions. ρ: Spearman‘s rho. D: D-Asp, L: L-Asp
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models (Table  1). Especially, the combination of the Pen 
and D-Asp markers in one RR model showed an improve-
ment on the overall MAE (8.55 years) and RMSE (10.18 
years), while the combination of the protein markers with 
the DNAm markers did not reveal a general advantage 
(MAE/RMSE 4.86 years/ 6.81 years (D-Asp + DNAm), 
4.91 years/ 6.72 years (Pen + DNAm), 4.93 years/ 6.63 
years (DAsp + Pen + DNAm) within the CV-evaluated data. 
However, it has to be considered that the DNAm analysis 
includes six markers that enter into the RR model as indi-
vidual independent markers and therefore have an overall 
higher impact on the model. As for the single molecular 
clock RR models, higher MAEs and RMSEs were obtained 
with increasing age (Suppl. Table S3).

Age prediction of independent samples from individuals 
with and without signs of decomposition

The individual and combined RR models were tested on 
the independent datasets using, as in the training dataset, 
individuals ≥ 18 years (dataset 2: n = 44, individuals with-
out signs of decomposition and dataset 3: n = 48, individuals 
with signs of decomposition). The MAE and RMSE results 
obtained of dataset 2 are comparable to the CV evaluation 
(Table 1; Fig. 3), with even slightly better results for Pen 
and D-Asp. This could be explained by small differences in 
the composition of the datasets and single outlier samples. 
The age prediction of dataset 3 samples revealed an overall 
lower prediction accuracy, except for D-Asp. Accuracy was 
especially decreased by the strong underestimation of age in 
a subset of samples. (Fig. 3).

Deeper investigation of samples from individuals with 
signs of decomposition

The state of decomposition of the individual from which 
the bone sample originates could influence the age accuracy 
achieved via a prediction model. Suppl. Fig. S2A shows all 
prediction results of the single molecular clocks and of the 
overall combined RR model in dependence on the d-score. 
No systematic directional shift to under- or over-prediction 
dependent on the decomposition was observed (Suppl. 
Fig. S2B). Also, no statistically significant correlation was 
found between the absolute prediction error and the dscore 
for the RR models based on DNAm (ρ = 0.2, p = 0.30), 
Pen (ρ = 0.005, p = 0.97), D-Asp (ρ=-0.2, p = 0.30), and 
the combined RR model DNAm + Pen + D-Asp (ρ = 0.16, 
p = 0.38) (Suppl. Fig. S2C).

A comparison of the results of each single-molecular 
age prediction RR model (DNAm, Pen, and D-Asp), and 
the DNAm + DAsp + Pen combined RR model was per-
formed for the total body dscore (Suppl. Fig. S3A, C, E) and 

for both parameters increasing substantially with age with a 
downward trend for some samples. In the case of DNAm, 
the same trends were observed. The age dependence was 
verified for all six markers with the test data (ρ = 0.79–0.89) 
and the decomposed samples (ρ = 0.4–0.73). Here, higher 
variability was observed for the older individuals and the 
decomposed samples, too. The downward trend was less 
distinct, but also visible except for KLF14.

Age prediction models based on training data and 
cross validation

Composition of training data set and hyperparameter 
optimization for model development

As Pen evaluation was difficult for samples under 18 years 
(no results in eight cases) and to avoid bias in the devel-
opment of machine models buildings due to the restricted 
sample numbers for individuals below age, only individu-
als equal or above 18 years from dataset 1 were included 
in the training data set. Therefore, 86 samples were finally 
included for model(s) development. Ridge regression (RR), 
a type of linear regression, was chosen as underlying algo-
rithm for the age prediction model, as it is a suitable model 
in case of a possible multicollinearity (correlation between 
the independent used markers) and avoiding overfitting by 
inclusion of a regularization term (penalty term alpha -L2). 
In the first step, hyperparameter optimization was conducted 
to determine the best L2 (alpha) value for each model by CV 
analysis. As the value did not show a strong impact and was 
always close to five, the final alpha = 5 was chosen for all 
RR models.

Single-molecular clock models

RR models (10times 10-fold CV) for D-Asp, Pen, and 
DNAm were built and evaluated (based on the CV) on the 
86 training data samples. The resulting mean MAEs and 
RMSEs can be found in Table 1. The best age prediction 
results were obtained for the DNAm marker set (MAE: 4.95 
years, RMSE: 6.89 years). Protein marker-based RR models 
revealed MAEs/ RMSEs of 9.66 years/ 11.52 years (Pen) 
and 11.91 years/14.47 years (D-Asp). As expected due to 
observed values and known accumulating inter-individual 
differences with increasing age, the MAE and RMSE show 
different accuracies considering only prediction results 
within specific age groups (Suppl. Table S3).

Combined molecular clocks

In addition, four combinations of the three molecular clocks 
were used for the construction and evaluation of the RR 
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chronological and predicted age can be attributed to the 
lower DNA content. In these cases, the combination (or 
sole) analysis of the protein markers was beneficial (Suppl. 
Fig. S4A-C).

For the proteins, improvement and decrease were not 
associated with specific d-score ranges. Considering the 
d-score, and the comparison of the D-Asp RR model and 
combined RR model, a slight tendency to less improvement 
was seen by combination of the molecular clocks for very 
strongly decomposed individuals (Suppl. Fig. S3A, B). Con-
sidering that the DNAm + Pen + D-Asp RR model improved 
age prediction for samples with very low DNA content com-
pared to the DNAm RR model, it could be assumed that 
the Pen RR model or D-Asp RR model could even be more 
advantageous without additional inclusion of DNA in these 
cases. However, as can be seen in Suppl. Figures S4A, B, no 
clear conclusion can be drawn from the samples within this 
study, as the addition of the DNAm analysis was still advan-
tageous in roughly half of the cases with very low DNA con-
tent compared to a pure D-Asp RR model or Pen RR model.

We further investigated, if an RR model developed with 
samples from individuals with signs of decomposition as 
training data might optimize the overserved decreased accu-
racy by inclusion of the variation due to decomposition. As 
the number of decomposed samples was restricted in this 
study, a leave-one-out CV (LOOCV) approach was cho-
sen for evaluation (Fig.  4; Table  2, Suppl. Table S3) and 
should be considered as a pilot model with need of further 
research. The developed RR model specifically trained with 
samples of individuals with signs of decomposition led to 
an improvement in overall accuracy compared to the predic-
tions based on the model trained on samples from individu-
als without signs of decomposition (cf. Figure 3; Table 1).

Discussion

The methodological possibilities for chronological age pre-
diction of a deceased person depend on the availability of 
the biological material. Skull bone is among the most com-
monly found bone type and agedependent accumulation of 
molecular markers like Pen and D-Asp as well as changes in 
the DNAm level could therefore be useful for age prediction 
[37]. As interindividual variations are known for all chrono-
logical age markers [47, 48], a combined analysis could be 
beneficial. For this purpose, we investigated age-dependent 
changes in these three molecular clocks, developed age pre-
diction RR models, investigated the improvement of age 
prediction by combination, and examined whether samples 
from individuals with signs of decomposition can also be 
analyzed. To achieve this, parietal bones from deceased 
individuals without and with signs of decomposition were 

head-specific d-score (Suppl. Fig. S3B, D, F). The calcula-
tion of the difference of the absolute prediction error for each 
sample between the single RR models (DNAm, Pen, DAsp, 
respectively) and the combined model for total body d-score 
as well as head-specific d-score revealed that the combina-
tion was partially able to improve the age prediction.

As for individuals without signs of decomposition, the 
highest improvement in prediction accuracy for individuals 
with signs of decomposition was obtained in the combined 
model compared to individual D-Asp and Pen RR mod-
els (Suppl. Fig. S3A-D). In case of DNAm, in which the 
sole DNAm RR model revealed a similar overall accuracy 
to the combined model, a deeper analysis was performed 
to investigate if the combination could improve prediction 
in single cases. In 13 of 48 samples, an improvement on 
the age prediction accuracy (at least 2 years better predic-
tion) was observed by the marker combination. However, 
the use of the combined model also reduced the accuracy 
in case of 8 samples (Suppl. Fig. S3E, F). Due to the lower 
values of D-Asp and Pen in a subset of samples in 6 of 8 
samples, the decrease in accuracy and a stronger underesti-
mation of the age than in the case of the DNAm-based age 
prediction model are explicable. Yet, the combination with 
the proteins generally does not lead to a stronger underes-
timation compared to the DNAm RR model. In 7 of the 13 
cases with improved prediction, inclusion of the protein 
parameters increased the calculated age, leading to a lower 
absolute error. For the two protein clocks, an improvement 
was obtained by the combination of all molecular clocks 
for 34 (Pen) and 30 (D-Asp) samples out of 48 samples, 
and a decrease in accuracy was obtained in 9 (Pen) and 11 
(D-Asp) samples (Suppl. Fig S3A-D). Overall, the amount 
(years) of improvement was higher compared to the amount 
of decrease.

However, investigating the results in dependence on 
the d-score on a single case basis rather than a systematic 
improvement or bias, especially in the case of samples with 
an overall high total body d-score greater than 15 or head-
specific d-score greater than 6, an improvement was visible 
for the combined RR model compared to the DNAm RR 
model. Within this study, no limit for a minimal amount of 
DNA was set for further processing to allow better research 
on the variation observed in challenging samples. Unsur-
prisingly, a higher variation in the deviations between 

Fig. 2  Results of the selected age-dependent protein and DNA meth-
ylation markers. The training data (Dataset 1 with age > = 18 (grey, 
n = 86)), independent data (dataset 2, samples without signs of decom-
position (blue, n = 44) and dataset 3, samples with signs of decompo-
sition (red, n = 48)). Accumulation of D-Asp (A) and Pen (B). DNA 
methylation levels for the final selected CpG sites from six amplicon 
regions  (C). ρtest: Spearman‘s rho dataset 2 (no signs of decompo-
sition), ρdec: Spearman‘s rho dataset 3 (decomposed samples). D: 
D-Asp, L: L-Asp, DNAm: DNA methylation
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rebuilt bone per year) and is influenced by e.g., diseases, 
stress, overall fitness, and hormonal influences [51]. It 
depends on bone type and is highest at sites where trabecular 
bone predominates and lowest at sites with a lot of cortical 
bone [4, 5]. In our study, we investigated skull bone samples 
having a higher density of cortical bone material and there-
fore a lower turnover rate [5]. However, with increasing 
age, the bone structure and metabolism change, resulting in 
loss of bone mass, decreasing thickness and osteoporosis 
[16, 18, 26]. It can therefore be assumed that the composi-
tion of the organic bone protein matrix varies, especially in 
old age, with each protein having its own kinetics for the 
accumulation of D-Asp and Pen, depending on its struc-
ture and metabolism. Consequently, variation in the protein 
composition through changes in bone metabolism as well as 
degradation of a total bone protein sample strongly impacts 
the D-Asp and Pen content of a total protein mixture. The 
only solution is the purification of individual long-living 
proteins. The analysis of D-Asp in purified osteocalcin from 
skull bones proves this theory with a very high correlation 
between D-Asp content in purified osteocalcin and age 
(Pearson r = 0.99 [52]). So far, only osteocalcin has been 
identified as a suitable bone protein; however, its purifica-
tion is very challenging. The identification of further suit-
able proteins and the establishment of practicable methods 
for protein purification is an important research goal. We 
confirmed the results from our pilot study (D-Asp ρ = 0.9; 
Pen ρ = 0.9) investigating bone samples from 15 individuals 
[37]. It has to be mentioned that a comparison between stud-
ies is limited as sample ranges, age composition within the 
dataset, and the used correlation parameter can be discrep-
ant between studies.

Also the observed Spearman’s correlation values for the 
DNAm markers (ρ = 0.87–0.93) were within the ranges of 
the pilot study (ρ = 0.9–0.93 [37]), although, the final ‘best’ 
CpG site was not the same in all cases. It would also be 

collected and the DNAm of 6 CpG sites in ELOVL2, KLF14, 
PDE4C, RPA2, TRIM59, and ZYG11A was analyzed using 
MPS, and the amount of D-Asp and Pen was determined by 
HPLC. To the best of our knowledge, this is the first study 
to examine age prediction using DNAm, D-Asp and Pen for 
samples in different stages of decomposition in bone.

Age-dependent changes in D-Asp, Pen and DNA 
methylation

The samples included in dataset 1 (n = 98) were used to 
characterize the age-dependent molecular clocks D-Asp, 
Pen and DNAm (i.e., included CpG sites) in bone (cf. Fig-
ure 1). One limitation was that the Pen accumulation during 
life was below the detectable threshold for some individuals 
under the age of 18 years.

Age-dependence was verified in bone with ρ > 0.8 in 
all markers, however, with a lower age-dependent corre-
lation for D-Asp (ρ = 0.86) compared to previous studies 
using highly bradytrophic and homogeneous tissues, such 
as dentine (Pearson r = 0.96–0.99 [9, 12, 13, 49]). The age-
dependent correlation for Pen was comparable to results for 
dentine (Pearson r = 0.94 [12, 15]).

Differences in the results for the protein parameters in 
total dentine and total bone can be explained by very dif-
ferent turnover rates in these tissues. Although dentine and 
bone share structural and functional similarities like the col-
lagen matrix and the mineral content, after initial formation 
during tooth development, mature dentine is a very brady-
trophic tissue with (almost) no turnover through which its 
protein composition stays largely unchanged [50] resulting 
in a close relation between D-Asp and Pen levels to age [12] 
even by analyzing total tissue.

Bone tissue on the other hand undergoes constant remod-
eling through a balanced process of old bone resorption and 
new bone replacement described as bone turnover rate (% 

Table 1  MAEs and RMSEs for training data (age ≥ 18 of dataset 1), test data (dataset 2) and individuals with signs of decomposition (dataset 3). 
The results are based on 10times 10-fold CV ridge regression model development and evaluation for D-Asp, Pen and DNAm, as well as combi-
nations. CV = cross validation, MAE = Mean absolute error, RMSE = root mean square error, CI = confidence interval, D-Asp = accumulation of 
D-aspartic acid, Pen = accumulation of pentosidine, DNAm = DNA methylation
Marker combination 10-times 10xCV

Training data (dataset 1, n = 86) 
Individuals without signs of 
decomposition
Test data (dataset 2, n = 44)

Individuals with signs of 
decomposition
(dataset 3, n = 48)

Mean MAE CV
(± 95% CI)
[years]

Mean RMSE CV
(± 95% CI)
[years]

MAE
[years]

RMSE
[years]

MAE
[years]

RMSE
[years]

D-Asp 11.91 (11.3–12.5) 14.57 (13.9–15.3) 11.72 14.57 11.68 15.42
Pen 9.66 (9.3–10.0) 11.52 (11.1–12.0) 7.72 9.26 11.77 15.07
DNAm 4.95 (4.6–5.3) 6.89 (6.4–7.4) 5.48 6.56 7.38 10.39
D-Asp + Pen 8.55 (8.2–8.9) 10.18 (9.7–10.6) 7.16 9.16 10.81 14.08
D-Asp + DNAm 4.86 (4.5–5.2) 6.81 (6.3–7.3) 5.39 6.5 7.07 9.81
Pen + DNAm 4.91 (4.6–5.2) 6.72 (6.2–7.2) 5.1 6.36 7.02 9.39
D-Asp + Pen + DNAm 4.93 (4.6–5.2) 6.63 (6.1–7.1) 5.11 6.34 6.8 9.08
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Fig. 3  Age predictions results for individuals of dataset 2 (individu-
als without signs of decomposition (blue)), and dataset 3 (individuals 
with signs of decomposition (red)). The RR models were developed 

with the training set. cf. Table 1. Rtest: dataset 2 (no signs of decom-
position), dec: dataset 3 (with signs of decomposition); RR = ridge 
regression
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Fig. 4  LOOCV ridge regression model for dataset 3 (decomposed samples). Results of LOOCV age predictions for the different marker combina-
tions used for model building, n = 48, cf. Table 2; LOOCV = leave-one-out cross validation, RR = ridge regression
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more accurate compared to the protein-based parameters 
(∆MAE of 5 years and 7 years). These results were con-
firmed by the independent test set (cf. Table 1). In a pre-
vious study based on dentine, age prediction models were 
developed that led to MAEs of 2.93 years for D-Asp and 
3.41 years for Pen [12]. First, DNAm age prediction models 
were developed, having e.g., in the study of Woźniak et al. 
(2021), an MAE of 3.3 years and 3.4 years in the training 
and test dataset by analysis of occipital and femoral bone 
material [38]. Differences in the MAEs compared to previ-
ous studies may be partly due to increased ages included in 
our study. The studies mentioned before included samples 
from individuals under 80 years (with the exception of one 
training sample in the study of Woźniak et al. (2021)) [22, 
38, 39, 53, 54]. In our study, all predictions models led to 
an increased MAE and RMSE in the older age groups, with 
a particularly strong decreased accuracy in the 80 + year’s 
age category (cf. Suppl. Table S3). As in case of other age 
prediction models based on molecular markers, the higher 
uncertainty in case of older individuals should be consid-
ered. For better interpretation of the obtained results, report-
ing of age group-dependent model evaluations parameters 
as presented in Suppl. Table S3 can be therefor helpful. In 
addition, information as the percentage of the correct pre-
dictions within a case-dependent useful interval (e.g. 61.4% 
+/- 5 years) could be added.

Advantage of using combined models

The combination of Pen and D-Asp for development of a 
RR model increased the overall accuracy (training set CV: 
MAE 8.55 years, RMSE 10.18 years, test set: MAE 7.16 
years, RMSE 9.16 years). The usefulness of this approach 
has already been demonstrated by combining the D-Asp 
and Pen content for age prediction in dentine obtaining a 
decrease in MAEs from 2.93 (D-Asp) and 3.41 years (Pen) 
to 2.68 years (combined) [12], observing the same effect for 
more complex tissues such as intervertebral discs and epi-
glottis [33]. Considering the single-molecular clock models, 
the accuracy (evaluated as MAE/RMSE) of the DNAm-
based model was superior to that of the protein-based age 
prediction in total protein samples. Combining the DNAm 
with either D-Asp, Pen, or D-Asp and Pen did not show 
an improvement in overall accuracy considering individu-
als without signs of decomposition. Nevertheless, this does 
not exclude an improvement in single cases as the MAE 
and RMSE evaluate the model performance based on all test 
data results. Therefore, the conclusion that isolated DNAm 
would always be sufficient in specific individual cases could 
be too short-sighted. The inclusion of the protein levels (as 
well as the inclusion of DNAm in protein models) might be 
useful in order to outbalance influences like lifestyle, health 

possible, to use neighboring CpG sites as an alternative, 
as these often had similar correlation values. Slight fluc-
tuations can be caused by sample size and age composi-
tion under study. Other studies have also analyzed DNAm 
in bone samples and revealed age-dependent changes [22, 
38, 39, 53, 54]. Furthermore, the six genomic regions show 
agedependent correlation in a wide range of other tissues 
and are (with different intensity) implemented in multiple 
age predictions models [30]. Although DNAm was a more 
accurate marker for age prediction, inter-individual varia-
tion increased with age, and outliers occurred. The observed 
age dependence may (partly) also be explained by changes 
in metabolism and turnover with increasing age caused by 
possible shifts in cell-type composition and cell function in 
dependence on the above-mentioned factors.

Age prediction based on three biological age 
estimators

For the development of the RR models, only samples of 
the collected individuals equal to and above 18 years were 
used as the training dataset (n = 86). Furthermore, two inde-
pendent test datasets (individuals without signs of decom-
position: n = 44, individuals with signs of decomposition: 
n = 48) were used to test the RR models. The RR models 
based on Pen and D-Asp in total protein samples resulted 
for the training data using CV in a mean MAE/ mean RMSE 
of 9.66 years/ 11.52 years (Pen), and 11.91 years/ 14.57 
years (D-Asp). The results for D-Asp and Pen do not mea-
sure up compared to the data for dentine and purified osteo-
calcin from skull bone [12, 15, 52]. However, the known 
methodological approaches for purifying osteocalcin are 
very complex and can currently hardly be used in forensic 
practice. Given this context, total protein samples were ana-
lyzed here. The DNAm approach led to a lower mean MAE 
mean RMSE of 4.95 years/ 6.89 years and was therefore 

Table 2  MAE and RMSE results of the leave-one-out-CV model 
trained with samples of individuals with signs of decomposition. 
LOOCV = leave-one-out-cross validation, MAE = Mean absolute 
error, RMSE = Root Mean Square Error, D-Asp = accumulation of 
D-aspartic acid, Pen = accumulation of pentosidine, DNAm = DNA 
methylation
Marker combination Individuals with signs of 

decomposition
LOOCV (n = 48)
MAE [years] RMSE [years]

D-Asp 11.94 14.88
Pen 10.88 13.67
DNAm 6.56 8.09
D-Asp + Pen 10.4 13.07
D-Asp + DNAm 6.44 8.1
Pen + DNAm 6.11 7.39
D-Asp + Pen + DNAm 6.19 7.61
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low DNA content (cf. Suppl. Figure  4C). An analysis of 
more samples is needed to support this indication.

The overall reduced accuracy in the age prediction based 
on the molecular clock models in decomposed individuals 
could be caused by postmortem changes like deterioration 
of the mineral phase and microbiological invasion which 
results in chemical and biological degradation of the organic 
bone matrix. In the absence of functional enzymatic repair 
mechanisms cellular components and DNA degrade due 
to their limited chemical stability [59, 60]. This leads to a 
change of the cell type composition and the amount and 
quality of DNA available for DNAm analysis.

Although bone proteins may be quite well preserved for a 
long time [55–57], postmortem degradation of proteins may 
significantly change the overall composition of total bone 
samples to a mixture of preserved proteins and fragments 
of broken proteins. This has direct implications on the over-
all contents of D-Asp and Pen, since they are analyzed as 
“summary values” in total protein samples. The even higher 
scattering of the data for older individuals could be related 
to a pre-existing intravital, age-related degradation of the 
organic bone matrix, which could result in a higher vulner-
ability against postmortem influences.

Additionally, the overall impaired tissue and cell struc-
ture in decomposed samples might have an impact. Espe-
cially for DNAm, a difference in the obtained DNAm values 
between individuals with and without signs of decomposi-
tion might occur due to the analysis process. As decalcifi-
cation and multiple washing steps are part of the analysis, 
therefore a destroyed or altered cell structure could lead to a 
specific ‘wash away’ effect changing the cell type composi-
tion analyzed in the final eluate. Moving forward, extensive 
research is needed in the future to investigate the impact of 
the discussed degradation processes potentially interfering 
with accurate age prediction.

To get first research insight, if it could be beneficial to 
include the very heterogeneous biological as well technical 
variation caused by decomposition in the training data of 
a model, pilot RR models were built for age prediction of 
individuals with signs of decomposition. Within this model, 
the d-score was not yet included, as not enough samples 
covered all d-scores in sufficient amount. The overall visible 
state of decomposition of the body (total body d-score) and 
head (head d-score (cf. Suppl. Table S1B)) do not neces-
sarily align with the decomposition state of specific tissues 
such as the bone material itself. As observed before, no cor-
relation was seen between the dscore and the age prediction 
deviation (Suppl. Fig. S2). Overall, the pilot LOOCV RR 
models improved the prediction accuracy and outbalanced 
the previously observed downward trend (cf. Figure 4),but 
should be considered with caution as more research and 

status, and numerous diseases [14, 31, 32]. Further research 
is needed to investigate the not yet well understood impact 
of these different factors on chronological age prediction 
models to define guidelines for in which cases a combina-
tion might be (dis) advantageous.

Impact of post-mortem changes on age prediction

In a next step, we examined samples with early to severe 
signs of decomposition and the effect on the prediction 
accuracies. In our study, all three molecular clocks were 
successfully analyzed. However, with even longer postmor-
tem intervals, reliable and accurate DNAm may be difficult. 
Bone proteins may be quite well preserved for a long time 
[55–57]. Nevertheless, postmortem degradation of proteins 
that change the overall composition of total bone samples 
may be a problem, if total bone samples (and not defined, 
purified proteins) are analyzed. In dentine, Pen could be 
stable over very long PMIs up to thousands of years (at least 
in dentine), which would enable a wide application range of 
age estimation based on this parameter also in the anthropo-
logical-archaeological context [58]. It remains to be clari-
fied whether this also applies to bones.

For all parameters, a moderate correlation with 
age was observed (ρ(Pen) = 0.68, ρ(D-Asp) = 0.59, 
ρ(DNAm(6CpGs)) = 0.4–0.73), which was lower compared 
to the samples from individuals without signs of decompo-
sition (cf. Figures  1 and 3). The biggest differences were 
observed for the markers with the highest correlation value 
(ρ) in individuals without signs of decomposition: Pen (∆ρ 
0.22), ELOVL2 (∆ρ 0.21), PDE4C (∆ρ 0.28), TRIM59 
(∆ρ 0.34), and KLF14 (∆ρ 0.39). The results can mainly 
be attributed to increased variation of single samples. This 
variation is also visible for the other markers, but ha less 
impact on the correlation value (ρ) due to an already higher 
variation in individuals without signs of decomposition. 
More research is needed to explicitly determine the under-
lying biological and technical causes (of which some are 
discussed below). An overall lower accuracy with MAEs of 
11.77 years (RMSE 15.07 years) for Pen and 11.68 years 
(RMSE 15.42 years) for D-Asp was obtained. The DNAm 
model still performed better with an MAE of 7.38 years 
(RMSE 10.39 years) compared to the protein-based param-
eters but less accurate than testing bones without signs of 
decomposition. A slight improvement was obtained for the 
RMSE (10.39 years (DNAm) vs. 9.08 years (combined)) by 
the combination of the three molecular clocks (cf. Table 1). 
The slightly greater drop of the RMSE compared to the 
MAE (7.38 years (DNAm) vs. 6.8 years (combined)) may 
give an indication that especially outliers in the age predic-
tion were reduced, which was the case in samples with very 
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Technical challenges

The data used for model development are based on D-Asp, 
Pen and DNAm analysis and technical variation has to be 
considered. Within this study, standardized methods were 
used for all samples to harmonize analysis over all three 
datasets. Technical variation was reduced to a minimum by 
using enough material e.g. to allow a DNA input of at least 
10 ng in the PCR, reducing stochastic variation. Neverthe-
less, as shown especially for the decomposed individuals, 
that was not always possible. Furthermore, the harsh pro-
cess of bisulfite conversion increases DNA degradation with 
a higher impact on DNAm analysis in case of already pre-
degraded samples. These effects remain a challenge in case 
of DNAm analysis from degraded and low DNA amounts 
increasing stochastic variation during DNAm analysis.

In case of protein analysis, technical variation can also 
arise by a too low powder amount (optimal amount in our 
study was identified with 20  mg) for a sufficient signal 
quantity for evaluation. Furthermore, the technical thresh-
old for detection of the protein accumulation resulted e.g. 
in detection challenges for the Pen accumulation in minors. 
More sensitive methods might be help in the future to over-
come that problem.

Model development and evaluation

The presented models and results are based on the choice 
of six CpG sites, two protein markers and ridge regres-
sion as underlying mathematical model. The included CpG 
sites showed age-dependency, and the mathematical model 
showed suitability, however the use or addition of other 
sites and optimization of the mathematical model might be 
able to improve the model.

The models developed during this study are based on 
samples from deceased individuals and therefore limited in 
material available, leading to a model excluding individuals 
under 18 years of age. This decision was made to exclude a 
bias due to imbalance of number of individuals per age cat-
egory and in addition due to the fact, that the interpretational 
threshold did not allow a reliable quantification of the Pen 
amount for all individuals under the age of 18 years. Within 
the study, sex balance between females and males as well as 
equal balance over the whole age group could not be com-
pletely achieved. A potential impact of the sex needs further 
consideration and deeper analysis with more samples. Fur-
thermore, the composition of dataset 3 including individuals 
with signs of decomposition is biased toward a higher age 
due to the circumstance that younger individuals are less 
often found in a (highly) decomposed state. Further collec-
tion of samples of specific ages and decomposition state 
could help to improve model building in the future.

samples are needed for a better understanding of all influ-
ences and to build a reliable model.

Considerations and limitations of the developed 
models

The developed models are based on the results of the ana-
lyzed samples and might be influenced by that. Next to the 
biological facts impacting the results, the used technical 
procedures can lead to variation, limits, and to study-spe-
cific results which are presented below.

Sample collection and preparation

Although the samples in this study were taken from strictly 
standardized areas (Os Parietale) at the same anatomical 
location, there could be differences and some heterogene-
ity between the cancellous and cortical portions within a 
bone fragment analyzed [61]. An additional factor caus-
ing variations in the proportion of cortical and cancellous 
bone is aging itself as described above [16]. This raises the 
question of whether different bone pieces from the same 
general location show intra-individual differences. Fur-
thermore, variation between measurements even from the 
same fragment can occur because of stochastic effects (mol-
ecules analyzed) and technical fluctuations, which should 
be part of future research. Furthermore, our results cannot 
be automatically transferred to other bone types analyzed 
(e.g. femur, an often-occurring sample type in forensic 
casework). A study by König et al. (2023) observed differ-
ences in the age-dependent accumulation of D-Asp and Pen 
between three bone types (skull, rib, clavicle), which could 
be due to differences in the structure and metabolism of the 
various bone types from different anatomical regions, lead-
ing to different protein compositions and thus to variations 
in D-Asp and Pen levels of the samples [62]. The resulting 
impact on age prediction models has to be further inves-
tigated and will also depend on the strategy of the model 
development (e.g. choice of mathematical model, inclusion 
of sampling location).

As the analysis of all molecular markers depends on 
sample preparation, the use of another sample prepara-
tion before analysis could lead to differences. As described 
above, e.g. longer incubation steps for bone decalcification 
or increased wash steps prior to DNAm analysis might lead 
to ‘wash-away’ effects and change cell type composition. 
Furthermore, blood cells in small capillaries and the remain-
ing bone marrow cannot be excluded as trabecular bone was 
not removed.
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