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ABSTRACT

Individualized phenotypic prediction based on structural magnetic resonance imaging (MRI) is an important goal 
in neuroscience. Prediction performance increases with larger samples, but small-scale datasets with fewer than 
200 participants are often unavoidable. We have previously proposed a “meta-matching” framework to translate 
models trained from large datasets to improve the prediction of new unseen phenotypes in small collection efforts. 
Meta-matching exploits correlations between phenotypes, yielding large improvement over classical machine 
learning when applied to prediction models using resting-state functional connectivity as input features. Here, we 
adapt the two best performing meta-matching variants (“meta-matching finetune” and “meta-matching stacking”) 
from our previous study to work with T1-weighted MRI data by changing the base neural network architecture to 
a 3D convolution neural network. We compare the two meta-matching variants with elastic net and classical trans-
fer learning using the UK Biobank (N = 36,461), the Human Connectome Project Young Adults (HCP-YA) dataset 
(N = 1,017), and the HCP-Aging dataset (N = 656). We find that meta-matching outperforms elastic net and clas-
sical transfer learning by a large margin, both when translating models within the same dataset and when trans-
lating models across datasets with different MRI scanners, acquisition protocols, and demographics. For example, 
when translating a UK Biobank model to 100 HCP-YA participants, meta-matching finetune yielded a 136% 
improvement in variance explained over transfer learning, with an average absolute gain of 2.6% (minimum = –0.9%, 
maximum  =  17.6%) across 35 phenotypes. Overall, our results highlight the versatility of the meta-matching 
framework.
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1.  INTRODUCTION

An important goal in systems neuroscience is to under-
stand how variation in brain structure relates to individual 
differences in behavior (Genon et al., 2022). Structural T1-
weighted magnetic resonance imaging (MRI) is a noninva-
sive technique for examining the anatomy of the human 
brain, providing high contrast between gray and white 
matter (Gifford et al., 2020). Structural MRI is widely used 
to predict behavioral traits, clinical symptoms, and diag-
nostic categories in both healthy individuals and individu-
als with neuropsychiatric disorders (Arbabshirani et  al., 
2017; Bhagwat et al., 2019; Cohen et al., 2021; Ooi et al., 
2022; Sabuncu et  al., 2015). However, most prediction 
studies use datasets with fewer than a few hundred  
participants, leading to low reproducibility and inflated 
performance (Arbabshirani et  al., 2017; Bzdok & 
Meyer-Lindenberg, 2018; Marek et  al., 2022; Masouleh 
et al., 2019; Poldrack et al., 2020). Studies have shown 
that prediction performance increases with larger sample 
sizes (Chu et al., 2012; Cui & Gong, 2018; He et al., 2020; 
Schulz et al., 2020), but for investigations of certain clini-
cal populations or focused neuroscience inquiries, small-
scale datasets remain unavoidable. Here, to address this 
fundamental issue, we seek to establish a framework to 
translate prediction models from large-scale datasets to 
predict new nonbrain-imaging phenotypes in small-scale 
datasets based on anatomical T1-weighted images.

More specifically, given a large-scale anatomical MRI 
dataset (N > 10,000) with multiple phenotypes, we seek 
to translate models trained from the large dataset to new 
unseen phenotypes in a small independent dataset 
(N  ≤  200). In machine learning, this problem is often 
referred to as meta-learning, lifelong learning, learning-
to-learn, or few-shot learning (Andrychowicz et al., 2016; 
Fei-Fei et al., 2006; C. Finn et al., 2017; Ravi & Larochelle, 
2016; Vanschoren, 2019), and is closely related to trans-
fer learning (Hospedales et al., 2021; Weiss et al., 2016). 
Broadly speaking, meta-learning and transfer learning 
methods usually train a model on abundant data on a 
related problem, called the source dataset, and seek to 
translate knowledge learned from the large-scale dataset 
to the small dataset, called the target dataset. During the 
translation, a subset of the target dataset is typically used 
to adapt the pretrained model to the new sample. One 
distinction between meta-learning and transfer learning 
is that in transfer learning, the prediction problem in the 
target dataset can be same (Aderghal et  al., 2018; 
Ghafoorian et  al., 2017; Wee et  al., 2019) or different 
(Dawud et al., 2019; Mehmood et al., 2021; Talo et al., 
2019) from the source dataset. On the other hand, meta-
learning always involves the translation of the prediction 
model to perform a new prediction problem in the target 

dataset—providing the imaging neuroscience community 
with a versatile modeling framework that, once estab-
lished, can be applied to a diversity of research goals.

In our previous study (He et al., 2022), we developed a 
simple “meta-matching” approach to translate prediction 
models from large datasets to improve the prediction of 
new phenotypes in small datasets. Meta-matching is 
grounded in the observation that many phenotypes are 
correlated, as demonstrated by previous studies identify-
ing a small number of factors linking brain-imaging data 
to various nonbrain-imaging traits such as cognition, 
mental health, demographics, and other health attributes 
(Kebets et al., 2019; Miller et al., 2016; Smith et al., 2015; 
Xia et al., 2018). As a result, a phenotype X in a smaller-
scale study is likely correlated, sharing a latent relation-
ship, with a phenotype Y present in a larger population 
dataset. Therefore, a model trained to predict phenotype 
Y from the larger dataset might be predisposed to fea-
tures useful for predicting phenotype X. Consequently, 
the predictive model of Y can be more effectively trans-
lated to predict phenotype X in the smaller study. As a 
demonstration of meta-matching (He et  al., 2022), we 
trained a simple fully connected feedforward neural net-
work to predict 67 nonbrain-imaging phenotypes from 
resting-state functional connectivity (RSFC) in the UK 
Biobank. The neural network was then translated using 
meta-matching to predict nonbrain-imaging phenotypes 
in the Human Connectome Project Young Adult (HCP-YA) 
dataset, yielding large improvements in prediction accu-
racies over classical kernel ridge regression (without 
meta-learning or transfer learning).

In the current study, we investigated whether the two 
best performing meta-matching variants (“meta-matching 
finetune” and “meta-matching stacking”) from our previ-
ous study (He et al., 2022) can be adapted to work with T1 
MRI data. More specifically, given the different modalities 
(RSFC versus T1), the base neural network architecture 
was changed from a fully connected feedforward neural 
network to the simple fully convolutional network (SFCN; 
Peng et al., 2021). The SFCN was chosen because of its 
simplicity and top performance in the Predictive Analysis 
Challenge 2019 of brain age prediction (Peng et al., 2021). 
We compared the two meta-matching variants with classi-
cal elastic net and classical transfer learning using the UK 
Biobank (Miller et  al., 2016; Sudlow et  al., 2015), the 
Human Connectome Project Young Adults (HCP-YA) data-
set (Van Essen et al., 2013), and the HCP-Aging dataset 
(Bookheimer et al., 2019; Harms et al., 2018).

It is worth mentioning that it is not obvious that meta-
matching will confer great benefits in anatomical MRI, 
compared with RSFC (He et al., 2022). The reason is that 
RSFC-based prediction typically utilizes high-dimensional 
features derived from N × N RSFC matrices, where N is the 
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number of brain parcels (or independent component anal-
ysis components). On the other hand, T1-based prediction 
can utilize low-dimensional N × 1 volumetric and/or thick-
ness measures. Therefore, classical machine learning 
techniques (e.g., elastic net) might work really well in the 
small sample regime (≤200 participants). Nevertheless, we 
found that meta-matching significantly outperformed clas-
sical elastic net and transfer learning, highlighting the ver-
satility of the meta-matching framework.

2.  METHODS

2.1.  Datasets and preprocessing

In this section, we describe the datasets and preprocess-
ing used in the current study. Table  1 summarizes the 
demographics and acquisition parameters of the three 
datasets we considered. We will evaluate meta-matching 
based on prediction accuracy when translating predic-
tion models within the same dataset (UK Biobank), as 
well as across datasets, i.e., from the UK Biobank to the 
HCP-YA and HCP-Aging datasets. The very different age 
ranges between the HCP-YA and UK Biobank served as 
a strong test of the generalizability of meta-matching. All 
data collection and analysis procedures were approved 
by the respective institutional review boards (IRBs), 
including the National University of Singapore IRB for the 
analysis presented in this paper.

2.1.1.  UK Biobank

The UK Biobank (UKBB) dataset is a large-scale epidemi-
ology study of over 500,000 adults from the United King-
dom (Alfaro-Almagro et  al., 2018). The volunteers were 
recruited between 2006 and 2010 from 22 centers across 
the United Kingdom. Participants were asked to answer 
a variety of questionnaires about different aspects of 
health and lifestyle. In addition, a range of physiological 
measurements was also collected. We considered the 
same set of 36,848 participants and 67 nonbrain-imaging 
phenotypes (referred to as phenotypes henceforth; 
Table S1) from our previous study (He et al., 2022).

As part of the UK Biobank pipeline (Alfaro-Almagro 
et  al., 2018), FreeSurfer recon-all was used to derive 
thickness and volume measures with the Desikan-

Killiany-Tourville (DKT40) cortical atlas (Klein & Tourville, 
2012) and subcortical segmentation (Fischl et al., 2002). 
We considered the subset of regions present in most par-
ticipants, yielding 164 morphometric measures, compris-
ing intracranial volume (ICV) and thickness measures of 
62 cortical regions, as well as volumes of 62 cortical 
regions and 39 subcortical gray-matter regions (Tables S4 
and S5). After excluding participants who have dropped 
out from our previous study (He et al., 2022) and exclud-
ing participants without all 164 morphometric measures, 
we ended up with 36,461 participants. As a baseline, 
these 164 measures will be utilized by the elastic net 
algorithm for phenotypic prediction (see Section 2.3).

Furthermore, we used FMRIB’s Linear Image Regis-
tration Tool (FLIRT) to transform the bias-field-corrected 
version of the brain-extracted T1 (from the UK Biobank 
provided preprocessing outputs) to the FSL MNI152 
standard-space T1 template with 1  mm resolution 
(Jenkinson et al., 2002; Jenkinson & Smith, 2001). Each 
T1 image was cropped to dimensions 160 x 192 x 160, 
and then divided by the mean value within each image 
following Peng et al. (2021). The normalized T1 images 
will be used by a convolutional neural network for phe-
notypic prediction (Section 2.3). Table 2 summarizes the 
preprocessing steps for the 3D T1 images for the UK 
Biobank, HCP-YA, and HCP-Aging datasets.

2.1.2.  HCP young adult (HCP-YA) dataset

We utilized the Human Connectome Project Young Adult 
(HCP-YA) dataset (Van Essen et al., 2013), which included 
healthy young adults. We considered 1,019 participants 
and 35 nonbrain-imaging phenotypes, consistent with 
our previous study (He et al., 2022). The phenotypes are 
found in Table S2.

FreeSurfer recon-all from the HCP pipeline was used 
to derive thickness and volume measures with the DKT40 
cortical atlas (Klein & Tourville, 2012) and ASEG subcorti-
cal segmentation (Fischl et al., 2002). We considered the 
subset of regions present in most participants, yielding 
166 morphometric measures, comprising intracranial vol-
ume (ICV) and thickness measures of 62 cortical regions, 
as well as volumes of 62 cortical regions and 41 subcor-
tical gray-matter regions (Tables S4 and S5). We note that 
the difference in the number of morphometric measures 

Table 1.  Summary of demographics and acquisition parameters of the three datasets used in the current study.

Age Sex (M/F) Scanner(s) Resolution

UK Biobank 45-82 53%/47% Siemens Skyra 3T scanner 1 mm
HCP-YA 22-35 47%/53% Customized Skyra 3T scanner 0.7 mm
HCP-aging 36-100 44%/56% Siemens Prisma 3T scanner 0.8 mm
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between the UK Biobank and HCP-YA datasets (164 vs. 
166) arose because the 5th-Ventricle and non-WM-
hypointensities were missing in most participants from 
the UK Biobank dataset. As a baseline, these 166 mea-
sures will be utilized by the elastic net algorithm for phe-
notypic prediction (see Section 2.3).

Moreover, we considered T1 images of 0.7 mm resolu-
tion which had been transformed to FSL MNI152 space by 
FLIRT from the HCP PreFreesurfer pipeline (Glasser et al., 
2013), which included gradient distortion correction, brain 
extraction, and readout distortion correction. We noted the 
files of two participants were missing in the HCP filesys-
tem, so we ended up with 1,017 participants. Each T1 
image was downsampled to 1 mm, cropped to dimensions 
160 x 192 x 160, and then divided by the mean value within 
each image following Peng et al. (2021). The processed T1 
images will be used by a convolutional neural network for 
phenotypic prediction (Section 2.3).

2.1.3.  HCP-aging dataset

Besides the HCP-YA dataset, we also used the Human 
Connectome Project Aging (HCP-Aging) dataset 
(Bookheimer et al., 2019; Harms et al., 2018) consisting 
of healthy participants. We manually selected commonly 
used nonbrain-imaging phenotypic measures across 
cognition, emotion, motor, sensor, and life experience, 
resulting in 45 phenotypes (Table S3). By only consider-
ing participants with at least 90% of the phenotypes, we 
ended up with 656 participants (out of 725 participants). 
Similar to the HCP-YA dataset, we used the same 166 
morphometric measures generated by the FreeSurfer 
recon-all procedure from the HCP pipeline. Moreover, we 
considered T1 images of 0.8 mm resolution, which had 
been transformed to FSL MNI152 space by FLIRT from 
the HCP PreFreesurfer pipeline (Glasser et  al., 2013), 
which included gradient distortion correction, brain 
extraction, and readout distortion correction. Each T1 
image was downsampled to 1 mm, cropped to dimen-
sions 160  x  192  x  160, and then divided by the mean 

value within each image following Peng et al. (2021). The 
processed T1 images will be used by a convolutional 
neural network for phenotypic prediction (Section 2.3).

2.2.  Data split for different analyses

We performed two sets of analyses. First, we bench-
marked meta-matching within the UK Biobank. Second, 
we translated predictive models from the UK Biobank to 
the HCP-YA and HCP-Aging datasets.

2.2.1.  Data split within the UK Biobank

For the UK Biobank analysis, we considered 36,461 par-
ticipants with T1 structural MRI and 67 phenotypes. As 
illustrated in Figure 1, we randomly split the data into a 
meta-training set comprising 26,573 participants with 33 
phenotypes, as well as a meta-test set comprising 9,888 
participants with 34 phenotypes. There was no overlap 
between the participants and phenotypes across the 
meta-training set and meta-test set.

We further randomly split the meta-training set into a 
training set with 21,258 participants (80% of 26,573 par-
ticipants) and a validation set with 5,315 participants 
(20% of 26,573 participants). The validation set was used 
for tuning hyperparameters of the predictive models.

For the meta-test set, we randomly split 9,888 partici-
pants into K participants (K-shot) and 9,888− K partici-
pants, where K had a value of 10, 20, 50, 100, and 200. 
The group of K participants mimicked traditional small-N 
studies. Various trained models from the meta-training 
set were translated to the meta-test set using the K par-
ticipants. The models were then evaluated using the 
remaining N – K participants. Each random K-shot split 
was repeated 100 times to ensure stability.

2.2.2.  Data split scheme for cross-dataset analyses

To translate predictive models from the UK Biobank  
to other datasets, we considered the HCP-YA and  

Table 2.  Summary of preprocessing steps for the 3D T1 images for the UK Biobank, HCP-YA, and HCP-Aging datasets.

Step # UK Biobank HCP pipeline

1 Gradient distortion correction Gradient distortion correction
2 Brain extraction (BET) and cut down FOV. Averaging of the same files (if multiple scans of 

the same modality exist)
3 Registration to standard space (linear) (FLIRT) AC-PC alignment
4 Registration to standard space (nonlinear) (FNIRT) Image FNIRT-based brain extraction
5 Create brain mask from MNI152_T1_1 mm, then  

do brain extraction
T2w to T1w image registration

6 Defacing Readout distortion correction
7 Bias correction (the bias field is estimated using FAST) Bias field correction
8 Tissue and subcortical structure segmentation Linear and nonlinear atlas registration to MNI152
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HCP-Aging datasets. As illustrated in Figure  2, the 
meta-training set comprised all 36,461 participants with 
all 67 phenotypes from the UK Biobank dataset. The 
first meta-test set consisted of 1,017 participants with 
35 phenotypes from the HCP-YA dataset. The second 
meta-test set consisted of 656 participants with 45 phe-
notypes from the HCP-Aging dataset. There was no 
overlap between the participants and phenotypes 
across the meta-training and meta-test sets because 
they were from totally different datasets. For the meta-
training set, we further randomly split it into a training 
set with 29,169 participants (80% of 36,461 partici-
pants) and a validation set with 7,292 participants (20% 
of 36,461 participants). The validation set was used for 
tuning hyperparameters of the predictive models.

For the HCP-YA dataset, we randomly split 1,017 par-
ticipants into K participants (K-shot) and 1,017− K partic-
ipants, where K had a value of 10, 20, 50, 100, and 200. 
Various trained models from the meta-training set were 
translated to the meta-test set using the K participants. 
The models were then evaluated using the remaining  
N – K participants. Each random K-shot split was repeated 
100 times to ensure stability. The same procedure was 
applied to the HCP-Aging dataset.

2.3.  Predictive models

Figure 3 provides an overview of the different approaches 
we will compare. Across all approaches, we z-normalize 
each nonimaging phenotype to have zero mean and unit 
variance across participants. More specifically, in the 

case of the meta-training set, the mean and standard 
deviation were computed using all the participants to 
apply the z-normalization. In the case of the meta-test 
set, for each phenotype, the mean and standard devia-
tion were computed from the K participants and subse-
quently carried over to the full meta-test set comprising 
the K participants and the remaining N – K test partici-
pants.

Following our previous study (He et al., 2022), statisti-
cal difference between algorithms was evaluated using a 
bootstrapping approach (more details in Supplementary 
Methods S2). More specifically, we will compare both 
meta-matching variants (Sections  2.3.3 and 2.3.4) with 
the two baselines (Sections  2.3.1 and 2.3.2). Multiple 
comparisons were corrected using a false discovery rate 
(FDR) of q < 0.05. FDR was applied to all K-shots, across 
all comparisons and both evaluation metrics: Pearson’s 
correlation and coefficient of determination (COD). For-
mula for COD (Feilong et al., 2021) is found in Supple-
mentary Methods S3.

2.3.1.  Baseline 1: elastic net

As a baseline, we used thickness and volumetric mea-
sures as input features to predict individuals’ phenotypes 
using elastic net (Fig. 3). Elastic net is a linear regression 
model with an L1 lasso and L2 ridge regularization terms 

Fig. 1.  Data split scheme for within-UK Biobank analysis. 
The UK Biobank dataset was divided into a meta-training 
set comprising 26,573 participants and 33 phenotypes, 
as well as a meta-test set comprising 9,888 participants 
and 34 other phenotypes. There was no participant or 
phenotype overlap between the meta-training and meta-
test sets. The meta-test set was, in turn, split into K 
participants (K = 10, 20, 50, 100, and 200) and remaining 
9,888 − K participants. The group of K participants 
mimicked studies with traditionally common sample sizes. 
Various trained models from the meta-training set were 
translated to the meta-test set using the K participants. 
The models were then evaluated using the remaining N – K 
participants. This random split was repeated 100 times for 
robustness.

Fig. 2.  Data split scheme for cross-dataset analysis. 
The meta-training set comprised 36,461 UK Biobank 
participants and 67 phenotypes. The first meta-test set 
comprised 1,017 HCP-YA participants and 35 phenotypes. 
The second meta-test set comprised 656 HCP-Aging 
participants and 45 phenotypes. Each meta-test was, in 
turn, split into K participants (K = 10, 20, 50, 100, and 200) 
and the remaining participants. The group of K participants 
mimicked studies with traditionally common sample sizes. 
Various trained models from the meta-training set were 
translated to the meta-test set using the K participants. 
The models were then evaluated using the remaining N – K 
participants. This random split was repeated 100 times for 
robustness.
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(Zou & Hastie, 2005). Here, we chose elastic net as a 
baseline because previous studies have suggested that 
the elastic net yielded strong prediction performance in 
phenotypic prediction for brain MRI data (Ooi et al., 2022; 
Peng et al., 2021; Pervaiz et al., 2020).

As a reminder, we had 62 cortical regions and 39 sub-
cortical gray-matter regions in the UK Biobank (Sec-
tion 2.1.1). The cortical regions yielded cortical thickness 
and volumetric measures, while the subcortical regions 
yielded volumetric measures. Together with the intracra-
nial volume, this results in 1 + 62 x 2 + 39 = 164 morpho-
metric features that were fed into the elastic net. In the 
case of the HCP-YA and HCP-Aging datasets, we had 62 
cortical regions and 41 subcortical gray-matter regions 
(Sections 2.1.2 and 2.1.3), yielding 1 + 62 x 2 + 41 = 166 
morphometric features.

We note that the range of values is very different for 
volumetric and thickness measures. Therefore, given K 
participants from the meta-test set, the morphometric 
(volumetric and thickness) measures were z-normalized 
based on the mean and standard deviation computed 
from the K participants. We note that the morphometric 
measures of the N – K participants were also z-normal-
ized using the mean and standard deviation computed 
from the K participants. The z-normalized morphometric 
measures were used as input to train the elastic net 
model on the K participants.

More specifically, we performed fivefold cross-
validation on the K participants with different combina-
tions of the hyperparameters λ1 and λ2 (which controlled 
the strength of the L1 and L2 regularizations). We used 
COD to evaluate prediction performance to choose the 
best hyperparameters for λ1 and λ2 across the fivefold 
cross-validation.

The best hyperparameters λ1 and λ2 were then used to 
train the elastic net model using all K participants. The 
trained elastic net model was then applied to the remain-
ing N – K test participants in the meta-test set. Pearson’s 
correlation and the COD were used to evaluate prediction 
performance. This procedure was repeated for each of 
the 100 random splits.

2.3.2.  Baseline 2: classical transfer learning

To perform classical transfer learning, we first trained a 
simple fully convolutional network (SFCN) introduced by 
Peng et al. (2021) in the meta-training set to jointly pre-
dict all the available meta-training phenotypes.

The input to the SFCN is the mean-normalized T1 
image affine transformed to MNI152 standard space 
(Section 2.1). The SFCN’s convolutional neural network 
(CNN) architecture was based on VGG (Simonyan & 
Zisserman, 2014) and used a fully convolutional struc-
ture (Long et al., 2015). We chose the SFCN given its 

Fig. 3.  Overview of different approaches. We considered two baselines: elastic net and classical transfer learning. We 
proposed two meta-matching variants: meta-matching finetune and meta-matching stacking.
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simplicity and top performance in the Predictive Analy-
sis Challenge 2019 of brain age prediction (Peng et al., 
2021). In the original study (Peng et al., 2021), the last 
layer comprised 40 nodes that represented the pre-
dicted probability of the age interval that a participant’s 
age falls into. Here, we modified the last layer to predict 
P phenotypes simultaneously. P is equal to 33 in the 
within-UK Biobank analysis (Fig. 1) and P is equal to 67 
in the cross-dataset analysis (Fig. 2).

Figure 4 shows the overall network architecture. The 
3D CNN consisted of several convolutional blocks for 
feature extraction. Each feature extraction block (except 
the last block) consisted of a 3D convolutional layer, a 
batch normalization layer, a max pooling layer, and a 
ReLU activation layer. The last block was similar to the 
previous blocks but without the max pooling layer. The 
feature maps from the last block were fed into an average 
pooling layer (green in Fig. 4).

Since the elastic net utilized ICV as one of the fea-
tures, while affine registration of T1 to MNI152 space 
removed this information, for the comparison to be com-
parable, we concatenated z-normalized ICV with the out-
puts of the average pooling layer. More specifically, for 
both meta-training and meta-test sets, ICV of each par-
ticipant was z-normalized using the mean and standard 
deviation computed from the participants of the training 
set within the meta-training set. The concatenated fea-
tures were then fed into a dropout layer and then went 
through a 3D convolution layer with 1 x 1 x 1 kernel size 
to produce the final outputs.

The hyperparameters of the CNN were empirically 
determined based on the meta-training set from the with-
in-UK Biobank analysis (Fig. 1A). Both within-UK Biobank 
and cross-dataset analyses used the same set of hyper-
parameters. More details about model architecture and 
hyperparameters (e.g., the number of blocks, number of 

channels per block, and kernel size per block) can be 
found in Supplementary Methods S1.

The same transfer learning procedure was used for 
both within-UK Biobank analysis and cross-dataset anal-
ysis (Fig. 3). The only difference is that the within-UK Bio-
bank analysis used a CNN model trained on 26,573 
participants and 33 phenotypes, while the cross-dataset 
analysis used a CNN model trained on 36,461 partici-
pants and 67 phenotypes.

To perform transfer learning, we first replaced the last 
layer of the 3D CNN model (trained on the meta-training 
set) with a new convolutional layer with 1 x 1 x 1 kernel 
size and one output node. The new convolutional layer 
was initialized with random weights. For each meta-test 
phenotype, the last two layers of the CNN model were 
then finetuned on K participants in the meta-test set, 
while the weights of the remaining layers were frozen.

The optimal learning rate was determined using grid 
search and fivefold cross-validation on the K participants. 
After choosing the optimal learning rate, it was then used 
to train a final model using all K participants. For both the 
fivefold cross-validation and the final round of finetuning, 
the maximum finetuning epochs were set to be 50 with 
80% of K participants used for training and 20% used to 
evaluate validation loss for early stopping, to reduce the 
possibility of overfitting. This final trained model was 
evaluated in the remaining N – K participants in the meta-
test set. Pearson’s correlation and COD were used to 
evaluate the prediction performance. This procedure was 
repeated for each of the 100 random splits.

2.3.3.  Meta-matching finetune

As an alternative to transfer learning, we considered the 
“meta-matching finetune” approach (Fig. 3) introduced in 
our previous study (He et al., 2022). To explain the meta-
matching finetune procedure in the current study, we will 
focus on the experimental setup for the within-UK Bio-
bank analysis.

Recall from Section  2.3.2 that we have trained a 3D 
CNN model to predict 33 phenotypes in the meta-training 
set from the UK Biobank. Given K participants from the 
meta-test set, we applied the CNN yielding 33 predictions. 
For each meta-test phenotype (out of 34 phenotypes), we 
calculated the accuracy (COD) with each of the 33 predic-
tions for the K participants. The output node of the CNN 
model with the best COD was chosen, while the remaining 
32 nodes were removed. The last two layers of the CNN 
model were finetuned using the K participants, while the 
weights of the remaining layers were frozen.

Therefore, the difference between meta-matching 
finetune and classical transfer learning (Section 2.3.2) is 
the initialization of the last layer. Classical transfer learning 

Fig. 4.  Network architecture of the Simple Fully 
Convolutional Neural Network (SFCN) model (Peng et al., 
2021) adapted to the current study. In the original study 
(Peng et al., 2021), the last layer comprised 40 nodes that 
represented the predicted probability of the age interval 
that a participant’s age falls into. Here, we modified the last 
layer to predict P phenotypes simultaneously.
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randomly initialized the last layer, while meta-matching 
finetune initialized the last layer by choosing the “closest” 
phenotypic prediction model from the meta-training set.

The optimal learning rate for finetuning was determined 
using grid search and fivefold cross-validation on the K 
participants. After choosing the optimal learning rate, it 
was then used to train a final model using all K partici-
pants. For both the fivefold cross-validation and the final 
round of finetuning, the maximum finetuning epochs were 
set to be 50 with 80% of K participants used for training 
and 20% used to evaluate validation loss for early stop-
ping, to reduce the possibility of overfitting.

This final trained model was evaluated in the remain-
ing N – K participants in the meta-test set. Pearson’s cor-
relation and COD were used to evaluate the prediction 
performance. This procedure was repeated for each of 
the 100 random splits. The same procedure was used for 
both the within-UK Biobank analysis and cross-dataset 
analysis (Fig. 3). The only difference was that the with-
in-UK Biobank analysis used a CNN model trained on 
26,573 participants and 33 phenotypes, while the cross-
dataset analysis used a CNN model trained on 36,461 
participants and 67 phenotypes.

2.3.4.  Meta-matching stacking

We also considered the meta-matching stacking 
approach (Fig.  3) introduced in our previous study (He 
et al., 2022). To explain the meta-matching stacking pro-
cedure in the current study, we will again focus on the 
experimental setup for the within-UK Biobank analysis.

Recall from Section 2.3.2 that we have trained a 3D 
CNN model to predict 33 phenotypes in the meta-training 
set from the UK Biobank. Given K participants from the 
meta-test set, we applied the CNN yielding 33 predic-
tions. For each meta-test phenotype (out of 34 pheno-
types), we calculated the accuracy (COD) with each of 
the 33 predictions for the K participants, and selected the 
top M predictions. The value of M was set to be the min-
imum of K and 33 to reduce overfitting. For example, 
when K = 20, then M was set to be 20. When K = 50, then 
M was set to be 33.

A stacking procedure was then performed (Breiman, 
1996; Wolpert, 1992), in which a kernel ridge regression 
(KRR) model was trained on K participants using the M 
predictions as input to predict the meta-test phenotype. 
Similar to our previous study (He et al., 2022), we used 
the correlation kernel. The hyperparameter λ was tuned 
using grid search and fivefold cross-validation on the K 
participants. The optimal λ was then used to train a final 
KRR model using all K participants.

The trained KRR model was then applied to the 
remaining N – K participants in the meta-test set. Pearson’s 

correlation and the COD were used to evaluate the pre-
diction performance. This procedure was repeated for 
each of the 100 random splits.

2.4.  Deep neural network implementation

The deep neural network was implemented using PyTorch 
(Paszke et al., 2017) and computed on NVIDIA RTX 3090 
GPUs with CUDA 11.0. More details are found in Supple-
mentary Methods S1.

2.5.  Model interpretation

Future studies using our pretrained models would have 
to interpret the resulting meta-matching models. There-
fore, to illustrate how meta-matching models can be 
interpreted, similar to our previous study (He et al., 2022), 
we utilized the Haufe transform (Haufe et  al., 2014) to 
interpret the meta-matching stacking prediction of the 
Rey Auditory Verbal Learning Test (RAVLT) score and 
Montreal Cognitive Assessment (MOCA) in the HCP-
Aging dataset for K = 100 participants.

For a predictive model with T1 structural MRI as input 
and phenotype as output, Haufe transform produces a 
feature importance value for each voxel. A positive (or 
negative) predictive feature value implied that higher T1 
intensity was related to predicting greater (or lower) phe-
notypic score.

More specifically, for each phenotype, Haufe transform 
was calculated as the covariance between the pheno-
type’s prediction based on the meta-matching stacking 
model and the intensity value of each T1 voxel (across the 
100 participants), yielding a 3D volume. The 3D volumes 
were averaged across the 100 random sampling of 100 
participants, and were then visualized in MNI152 space.

We chose cognitive measures from the HCP-Aging 
dataset because there is a vast literature studying the 
relationships between aging and brain structures. As 
such, we expected that smaller hippocampal volume and 
larger ventricular size were predictive of worse cognition. 
However, because the model was trained on T1 intensi-
ties, careful inference is necessary to link the feature 
importance values of T1 intensities with more neuroana-
tomically grounded interpretations, e.g., how interindivid-
ual variation in hippocampal volume predicts cognition.

2.6.  Computational costs

Meta-matching training comprised two stages. The first 
stage was to train the 3D CNN model on the meta-training 
set. The second stage adapted the model to K partici-
pants from a new target dataset. Finally, the adapted 
model was tested on the remaining N – K participants in 
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the meta-test set, where N was the total number of par-
ticipants in the meta-test set.

In our study, the 3D CNN model was trained on the 
meta-training set, using a single GPU (RTX3090 with 
24 GB GPU memory). The whole training procedure took 
around 5 days. For the second stage involving K meta-
test participants, meta-matching stacking required a sin-
gle forward pass through the 3D CNN model, followed by 
training a KRR model on the K participants for each tar-
get phenotype. For each random sampling of K partici-
pants, for each value of K and for each phenotype, the 
training time was around 0.2  seconds (inclusive of the 
fivefold cross-validation to select the best hyperparame-
ter). Evaluating the trained meta-matching stacking 
model on the N – K participants was a lot faster. For each 
value of K and each phenotype, evaluation for each ran-
dom sampling of K participants required around 0.0007 
seconds per 100 test participants.

On the other hand, the computational costs for meta-
matching finetune and classical transfer learning were 
about the same, but a lot more than meta-matching 
stacking. For each random sampling of K participants 
and for each phenotype, the training time for meta-
matching finetune (or transfer learning) was about 5 sec-
onds for K = 10 or 20, and about 30 seconds for K = 50, 
100, or 200 (inclusive of the fivefold cross-validation to 
select the best hyperparameter). Evaluation in the N – K 
participants was a lot faster. For each value of K and each 
phenotype, evaluation for each random sampling of K 
participants required around 0.0193 seconds per 100 
test participants.

Because of the expensive training costs for meta-
matching finetune and classical transfer learning, the 
bootstrapping procedure to obtain p values could not be 
applied to meta-matching finetune and classical transfer 
learning. With one GPU, the entire training procedure of 
the within-UK Biobank, HCP-YA, and HCP-Aging analy-
ses with 1000 bootstraps would require around (5 sec-
onds ×  2  +  30 seconds ×  3) ×  1000 bootstraps ×  114 
phenotypes  =  11,400,000  seconds or 132  days. Doing 
this for both meta-matching finetune and classical trans-
fer learning would then require 264 days. On our comput-
ing facility, we might on average be able to utilize four 
GPUs (depending on load), so the total run time would be 
264 /4 = 66 days.

In the case of elastic net, with 164 (or 166) morpho-
metric features, for each random sampling of K partici-
pants and for each phenotype, the training time was 
about 3 seconds for K = 10 or 20, and was about 6 sec-
onds for K = 50, 100, or 200. For each value of K and 
each phenotype, evaluation for each random sampling of 
K participants required around 0.0028 seconds per 100 
test participants.

3.  RESULTS

3.1.  Meta-matching outperforms elastic net  
and transfer learning within the UK Biobank

Four approaches (elastic net, classical transfer learning, 
meta-matching finetune, and meta-matching stacking) 
were applied to the UK Biobank to predict 34 meta-test 
phenotypes. The models were trained or adapted based 
on K participants and then evaluated on the remaining 
9,888 – K participants (Fig. 1).

Figures  5A and 6A show the Pearson’s correlation 
and COD, respectively, averaged across all 34 meta-
test phenotypes. Each boxplot represents 100 random 
samplings of K participants. Figures  5B and 6B show 
the outcomes of the statistical tests obtained by a boot-
strapping procedure (Supplementary Methods S2 and 
Figure S1). The actual p values are reported in Table S6. 
Colors indicate effect sizes of differences (Cohen’s D) 
between approaches.

In the case of Pearson’s correlation (Fig. 5), both meta-
matching finetune and meta-matching stacking greatly 
outperformed elastic net and classical transfer learning 
for all values of K. Meta-matching stacking was statisti-
cally better than meta-matching finetune for K ≥ 100.

In the case of COD (Fig. 6), both meta-matching fine-
tune and meta-matching stacking greatly outperformed 
elastic net for all values of K. For K ≤ 20, classical transfer 
learning was numerically better but not statistically better 
than meta-matching stacking. From K  ≥  50, meta-
matching stacking was numerically better than transfer 
learning with statistical significance from K = 100 onward.

On the other hand, for K = 10, classical transfer learn-
ing was numerically better than meta-matching finetune, 
while meta-matching finetune was better than classical 
transfer learning for the remaining other values of K with 
large effect sizes (light green in Fig.  6B). We note that 
there was no statistical test between meta-matching fine-
tune and classical transfer learning because of the huge 
computational cost of the two approaches, so no boot-
strapping was performed for either approach.

Another relevant point is that COD for all approaches 
was negative for K  =  10. COD was positive for meta-
matching finetune for K  =  20 onward, and positive for 
meta-matching stacking for K  =  50 onward. This sug-
gests that absolute prediction accuracy (i.e., COD) is dif-
ficult even with meta-learning or transfer learning, when 
the sample size is very small.

Overall, meta-matching was better than elastic net for 
all values of K for both evaluation metrics (Pearson’s cor-
relation and COD). On the other hand, meta-matching 
compared favorably with respect to transfer learning for 
all values of K for Pearson’s correlation and for larger val-
ues of K for COD.
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3.2.  Meta-matching outperforms baselines  
in the HCP-YA dataset

The previous experiment results (Figs. 5 and 6) suggest 
that meta-matching can perform well when transferring 
within the same dataset (UK Biobank). We now evaluate 
the generalizability of meta-matching across datasets, 

using the HCP-YA and HCP-Aging datasets (Fig. 2) in the 
following section and next section, respectively.

Figures 7A and 8A show the Pearson’s correlation and 
COD, respectively, averaged across all 35 meta-test phe-
notypes in the HCP-YA dataset. Each boxplot represents 
100 random samplings of K participants. Figure 9A shows 

Fig. 5.  Meta-matching compared favorably with elastic 
net and direct transfer learning in terms of Pearson’s 
correlation within the UK Biobank. (A) Phenotypic prediction 
performance (Pearson’s correlation) averaged across 34 
meta-test phenotypes in the UK Biobank. X-axis represents 
the number of participants in the meta-test set of the UK 
Biobank used to train an elastic net or adapt the pretrained 
model from the meta-training set of the UK Biobank. 
Each boxplot shows the distribution of performance over 
100 repetitions of sampling K participants. (B) Statistical 
difference between the prediction performance (Pearson’s 
correlation) of baseline methods and meta-matching 
algorithms. p Values were calculated based on a two-sided 
bootstrapping test. “*” indicates statistical significance 
after multiple comparisons correction (FDR q < 0.05). “ns” 
indicates that statistical test did not survive FDR correction. 
We note that there was no statistical test between meta-
matching finetune and classical transfer learning because 
the bootstrapping procedure was too expensive for the 
two methods. Colors indicate effect sizes of differences 
(Cohen’s D) between approaches. Light green indicates 
effect size ≥ 0.8. Dark green indicates 0 ≤ effect size < 0.8. 
Dark pink indicates −0.8 < effect size < 0. Light pink 
indicates effect size ≤ −0.8. There is no color for the 
comparison between meta-matching finetune and stacking 
since they are both our proposed methods.

Fig. 6.  Meta-matching compared favorably with elastic 
net and direct transfer learning in terms of coefficient of 
determination (COD) within the UK Biobank. (A) Phenotypic 
prediction performance (COD) averaged across 34 meta-
test phenotypes in the UK Biobank. X-axis represents 
the number of participants in the meta-test set of the UK 
Biobank used to train an elastic net or adapt the pretrained 
model from the meta-training set of the UK Biobank. 
Each boxplot shows the distribution of performance over 
100 repetitions of sampling K participants. (B) Statistical 
difference between the prediction performance (COD) of 
baseline methods and meta-matching algorithms. p Values 
were calculated based on a two-sided bootstrapping 
test. “*” indicates statistical significance after multiple 
comparisons correction (FDR q < 0.05). “ns” indicates 
statistical test did not survive FDR correction. We note 
that there was no statistical test between meta-matching 
finetune and classical transfer learning because the 
bootstrapping procedure was too expensive for the 
two methods. Colors indicate effect sizes of differences 
(Cohen’s D) between approaches. Light green indicates 
effect size ≥ 0.8. Dark green indicates 0 ≤ effect size < 0.8. 
Dark pink indicates −0.8 < effect size < 0. Light pink 
indicates effect size ≤ −0.8. There is no color for the 
comparison between meta-matching finetune and stacking 
since they are both our proposed methods.
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the outcomes of the statistical tests obtained by a boot-
strapping procedure (Supplementary Methods S2 and  
Figure S2). The actual p values are reported in Table S7. 
Colors indicate effect sizes of differences (Cohen’s D) 
between approaches.

In the case of Pearson’s correlation (Fig.  7A), both 
meta-matching finetune and meta-matching stacking 

Fig. 7.  Meta-matching compared favorably with elastic 
net and classical transfer learning in terms of Pearson’s 
correlation when translating models from the UK Biobank 
to new target datasets. (A) Phenotypic prediction 
performance (Pearson’s correlation) averaged across 
35 meta-test phenotypes in the HCP-YA dataset. X-axis 
represents the number of participants from the HCP-YA 
dataset used to train an elastic net or adapt the pretrained 
model from the meta-training set. Each boxplot shows 
the distribution of performance over 100 repetitions of 
sampling K participants. (B) Same plot as panel (A) except 
that the analyses were performed in the HCP-Aging 
dataset and averaged across the 45 meta-test HCP-Aging 
phenotypes. “*” and dash line indicate the results of a two-
sided bootstrapping statistical test between meta-matching 
variants and other approaches. “*” indicates statistical 
significance after multiple comparisons correction (FDR 
q < 0.05). The dash line (without the “*”) indicates that the 
comparison was not significant. We note that there was 
no statistical test between meta-matching finetune and 
classical transfer learning because the bootstrapping 
procedure was too expensive for the two methods.

Fig. 8.  Meta-matching compared favorably with 
elastic net and classical transfer learning in terms of 
coefficient of determination (COD) when translating 
models from the UK Biobank to new target datasets. 
(A) Phenotypic prediction performance (COD) averaged 
across 35 meta-test phenotypes in the HCP-YA dataset. 
X-axis represents the number of participants from the 
HCP-YA dataset used to train an elastic net or adapt 
the pretrained model from the meta-training set. Each 
boxplot shows the distribution of performance over 100 
repetitions of sampling K participants. (B) Same plot as 
panel (A) except that the analyses were performed in the 
HCP-Aging dataset and averaged across the 45 meta-
test HCP-Aging phenotypes. “*” and dash line indicate 
the results of a two-sided bootstrapping statistical test 
between meta-matching variants and other approaches. 
“*” indicates statistical significance after multiple 
comparisons correction (FDR q < 0.05). The dash line 
(without the “*”) indicates that the comparison was not 
significant. We note that there was no statistical test 
between meta-matching finetune and classical transfer 
learning because the bootstrapping procedure was too 
expensive for the two methods.
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were better than elastic net and classical transfer learning 
for all values of K with large effect sizes (light green in 
Fig. 9A). Meta-matching finetune was statistically better 
than elastic net for K = 20 and 50. Meta-matching stack-
ing was statistically better than classical transfer learning 
for K ≥ 20. For this cross-dataset analysis, meta-matching 
finetune was generally numerically better, but not statisti-
cally better than meta-matching stacking.

In the case of COD (Fig. 8A), both meta-matching fine-
tune and meta-matching stacking greatly outperformed 
elastic net for K ≤ 100. For K ≤ 50, classical transfer learn-
ing was numerically better than meta-matching stacking 
with large effect sizes (light pink in Fig. 9A), but the differ-
ences were not significant. From K ≥ 100, meta-matching 
stacking was numerically better, but not statistically bet-
ter than transfer learning.

On the other hand, for all values of K, meta-matching 
finetune was numerically better than classical transfer 
learning with large effect sizes (light green in Fig. 9A). 
We note that there was no statistical test between 
meta-matching finetune and classical transfer learning 

because of the huge computational cost of the two 
approaches, so no bootstrapping was performed for 
either approach.

Another relevant point is that COD for all approaches 
was negative (or almost zero) for K = 10, and only positive 
for meta-matching finetune for K ≥  20, suggesting that 
absolute prediction accuracy (i.e., COD) is difficult even 
with meta-learning or transfer learning when the sample 
size is very small.

Overall, meta-matching compared favorably with 
respect to elastic net for all values of K for both evalua-
tion metrics (Pearson’s correlation and COD). On the 
other hand, meta-matching compared favorably with 
respect to transfer learning for all values of K for Pear-
son’s correlation and for K ≥ 100 for COD.

3.3.  Meta-matching outperforms baselines  
in the HCP-Aging dataset

Figures 7B and 8B show the Pearson’s correlation and 
COD, respectively, averaged across all 45 meta-test 

Fig. 9.  Statistical difference and effect size between the prediction performance of baseline methods and meta-matching 
algorithms for the (A) HCP-YA and (B) HCP-Aging datasets. p Values were calculated based on a two-sided bootstrapping 
test. “*” indicates statistical significance after multiple comparisons correction (FDR q < 0.05). “ns” indicates that 
statistical test did not survive FDR correction. We note that there was no statistical test between meta-matching finetune 
and classical transfer learning because the bootstrapping procedure was too expensive for the two methods. Colors 
indicate effect sizes of differences (Cohen’s D) between approaches. Light green indicates effect size ≥ 0.8. Dark green 
indicates 0 ≤ effect size < 0.8. Dark pink indicates −0.8 < effect size < 0. Light pink indicates effect size ≤ −0.8. There is no 
color for the comparison between meta-matching finetune and stacking since they are both our proposed methods.
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phenotypes in the HCP-Aging dataset. Each boxplot 
represents 100 random samplings of K participants. 
Figure  9B shows the outcomes of the statistical tests 
obtained by a bootstrapping procedure (Supplementary 
Methods S2 and Figure S3). The actual p values are 
reported in Table S8. Colors indicate effect sizes of dif-
ferences (Cohen’s D) between approaches.

In the case of Pearson’s correlation (Fig.  7B), both 
meta-matching finetune and meta-matching stacking 
greatly outperformed elastic net and classical transfer 
learning for most values of K. Meta-matching stacking 
was statistically better than elastic net for K ≥ 20. Meta-
matching stacking was statistically better than classical 
transfer learning for all values of K. For this cross-dataset 
analysis, meta-matching stacking was numerically better, 
but not statistically better than meta-matching finetune.

In the case of COD (Fig. 8B), both meta-matching fine-
tune and meta-matching stacking greatly outperformed 
elastic net for all values of K. For K ≤ 20, classical transfer 
learning was numerically better, but not statistically bet-
ter than meta-matching stacking. From K  ≥  50, meta-
matching stacking was numerically better than transfer 
learning with statistical significance achieved for K ≥ 100.

On the other hand, for all values of K, meta-matching 
finetune was numerically better than classical transfer 
learning with large effect sizes (light green in Fig. 9B). We 
note that there was no statistical test between meta-
matching finetune and classical transfer learning because 
of the huge computational cost of the two approaches, 
so no bootstrapping was performed for either approach.

Another relevant point is that COD for all approaches 
was negative (or almost zero) for K = 10, and only positive 
for meta-matching finetune for K ≥  20, suggesting that 
absolute prediction accuracy (i.e., COD) is difficult even 
with meta-learning or transfer learning when the sample 
size is very small.

Overall, meta-matching was better than elastic net 
for all values of K for both evaluation metrics (Pearson’s 
correlation and COD). On the other hand, meta-matching 
compared favorably with respect to transfer learning for 
all values of K for Pearson’s correlation and for K ≥ 50 
for COD.

3.4.  Different improvements on different 
phenotypes

Overall, meta-matching improved prediction on average 
across multiple phenotypes. However, we note that the 
improvement was not uniform across phenotypes. Fig-
ure 10 illustrates the prediction performance (Pearson’s 
correlation) of three nonbrain-imaging phenotypes for 
K = 100 participants. In the case of the HCP-YA dataset 
(Fig.  10A), meta-matching finetune compared favorably 

with other approaches for predicting dexterity and lan-
guage, but only achieved similar prediction accuracy on 
emotion. In the case of the HCP-Aging dataset (Fig. 10B), 
meta-matching stacking compared favorably with other 
approaches for predicting fear somatic and anger aggres-
sion, but only achieved similar prediction accuracy on 
perceived rejection. Tables S9 and S10 report the predic-
tion accuracy (Pearson’s correlation and COD) of all phe-
notypes in the HCP-YA and HCP-Aging datasets for all 
approaches. Tables  S11 and S12 report the prediction 
errors (mean absolute error) for all phenotypes.

Given that meta-matching exploits correlations among 
phenotypes, we hypothesized that variability in predic-
tion improvements was driven by interphenotype correla-
tions between the meta-training and meta-test sets. 
Figure  11 shows the performance improvement (Pear-
son’s correlation) of meta-matching stacking as a func-
tion of the maximum correlation between each meta-test 

Fig. 10.  Examples of prediction performance (Pearson’s 
correlation) for different nonbrain-imaging phenotypes in 
the (A) HCP-YA and (B) HCP-Aging datasets in the case of 
K = 100 participants.
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phenotype and meta-training phenotype in the within-UK 
Biobank analysis. As expected, meta-test phenotypes 
with stronger correlations with at least one meta-training 
phenotype led to greater prediction improvement with 
meta-matching. We note that this analysis required meta-
training and meta-test phenotypes to be present in the 
same participants, so could only be performed for the 
within-UK Biobank analysis.

3.5.  Interpreting meta-matching stacking  
with Haufe transform

Figure  12 illustrates the feature importance maps 
obtained from the Haufe transform for predicting the Rey 
Auditory Verbal Learning Test (RAVLT) score and Mon-
treal Cognitive Assessment (MOCA) in the HCP-Aging 
dataset for K  =  100. We note that a higher RAVLT or 
MOCA scores indicated better cognition.

Since we are using T1 intensity for prediction, linking 
the feature importance values of T1 intensities to more 
neuroanatomically grounded interpretations has to be 
done with care. For both RAVLT and MOCA, positive 
feature importance values were observed in the ventral 
diencephalon and the third ventricle (left panels of Fig-
ure 12A and 12B), which suggested that higher T1 value 
led to prediction of better cognition (higher RAVLT and 
MOCA scores). By observing participants who per-
formed poorly (right panels of Figure 12A and 12B) and 
participants who performed well (middle panels of Fig-
ure 12A and 12B), we inferred that the prediction might 
be partially driven by enlarged ventricles in participants 
with worse cognition (arrows in Fig. 12), yielding a lower 
T1 value in the region.

Similarly, we observed negative feature importance 
values on the edges of the left and right hippocampi 
(rather than directly on top of the hippocampi), which 
suggested that higher T1 value led to prediction of worse 
cognition (lower RAVLT and MOCA scores). By observing 
participants who performed poorly (right panels of Fig-
ure 12A and 12B) and participants who performed well 
(middle panels of Fig. 12A and 12B), we inferred that the 
prediction might be partially driven by gray-matter loss at 
or near the hippocampi, yielding a higher T1 value in the 
region, consistent with the aging literature (Apostolova 
et al., 2012; Ritter et al., 2017).

4.  DISCUSSION

In this study, we adapted two meta-matching variants 
from our previous study (He et al., 2022) to translate pre-
diction models trained from large-scale T1-weighted 
anatomical MRI datasets to predict new nonbrain-
imaging phenotypes in small-scale T1-weighted anatom-
ical MRI datasets. We demonstrated that meta-matching 
finetune and meta-matching stacking greatly outper-
formed classical elastic net and classical transfer learn-
ing when the number of participants ≤ 200. Meta-matching 
performed well even when translating from a large-scale 
dataset (UK Biobank) to a small dataset (HCP-YA or 
HCP-Aging) with different scanners, acquisition, demo-
graphics, and preprocessing.

4.1.  Benchmarking

Across all analyses in the UK Biobank, HCP-YA, and 
HCP-Aging datasets (Figs.  5 to 9), meta-matching  

Fig. 11.  Prediction improvements were driven by correlations between meta-training and meta-test phenotypes. Vertical 
axis shows the prediction improvement of meta-matching stacking with respect to elastic net baseline under the 100-shot 
scenario. Prediction performance was measured using Pearson’s correlation. Each dot represents a meta-test phenotype. 
Horizontal axis shows each test phenotype’s top absolute Pearson’s correlation with phenotypes in the meta-training set. 
Test phenotypes with stronger correlations with at least one training phenotype led to greater prediction improvement with 
meta-matching.
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consistently outperformed elastic net across both eval-
uation metrics (correlation and COD). It is worth noting 
that the elastic net utilized thickness and volumetric 
measures generated by FreeSurfer, instead of the inten-
sity values of T1 images (like meta-matching and trans-
fer learning). One reason is that it is too computationally 
expensive to include a baseline elastic net with T1 
image as input. Based on our back of the envelope cal-
culations, just running such a baseline on HCP-Aging 
alone would require around 50  days of computation 
time on our computing facility. Furthermore, given that 
we are working in the small sample regime with K ≤ 200 
training participants, we believe that the small number 

of less than 200 predefined morphometric features 
together with elastic net provides a stronger baseline 
than an elastic net with T1 image as the input.

When using Pearson’s correlation as an evaluation 
metric, transfer learning performed poorly with substan-
tially worse performance than both meta-matching vari-
ants and even elastic net (Figs. 5, 7 and 9). On the other 
hand, when using COD as an evaluation metric, transfer 
learning was more competitive with respect to the other 
approaches (Figs. 6, 8, and 9). More specifically, transfer 
learning was numerically better (but not statistically bet-
ter) than meta-matching stacking for small values of K, 
while meta-matching stacking was numerically better 

Fig. 12.  Feature importance of meta-matching stacking in the HCP-Aging dataset for K = 100 participants. (A) Feature 
importance map of meta-matching stacking from predicting Rey Auditory Verbal Learning Test (RAVLT) score. Left 
panel shows the feature importance map on the MNI152 template. A positive (or negative) feature importance value 
indicates that higher intensity was associated with predicting greater (or lower) phenotypic values. Middle panel shows an 
example participant with high RAVLT score. Right panel shows an example participant with low RAVLT score. (B) Feature 
importance map of meta-matching stacking from predicting the Montreal Cognitive Assessment (MOCA) score. Left panel 
shows the feature importance map on the MNI152 template. Middle panel shows an example participant with high MOCA 
score. Right panel shows an example participant with low MOCA score.



16

N. Wulan, L. An, C. Zhang et al.	 Imaging Neuroscience, Volume 2, 2024

(and sometimes statistically better) than transfer learning 
for larger values of K.

On the other hand, meta-matching finetune outper-
formed transfer learning for most values of K even in the 
case of COD. We note that meta-matching finetune is 
similar to classical transfer learning in the sense that the 
last two layers of the CNN were finetuned. However, 
while transfer learning initialized the last layer of the CNN 
from scratch (Section  2.3.2), meta-matching finetune 
retained the weights leading to the output node that pre-
dicted the K meta-test participants the best (for each 
meta-test phenotype). This further supported the impor-
tance of the meta-matching approach.

Overall, meta-matching stacking was the best for the 
Pearson’s correlation metric, while meta-matching fine-
tune was the best for COD. Pearson’s correlation is a mea-
sure of relative prediction performance, while COD is a 
measure of absolute prediction performance (E. S. Finn 
et al., 2015; Poldrack et al., 2020; Scheinost et al., 2019). 
Therefore, researchers more focused on relative prediction 
performance might consider using meta-matching stack-
ing, while researchers more focused on absolute predic-
tion performance might consider using meta-matching 
finetune. Furthermore, all approaches achieved negative 
or close to zero COD when K ≤ 20, suggesting that abso-
lute prediction remains out of reach in the very small sam-
ple regime. COD was above zero for meta-matching 
finetune when K ≥ 50. However, COD values were still less 
than 0.1 (i.e., 10% of explained variance) even when 
K = 200, suggesting potential room for improvement.

However, we note that the reported averaged COD 
values obscured large variation in prediction accuracies 
across phenotypes. In the case of HCP-Aging, when 
K = 100 (Table S10), meta-matching finetune was able to 
achieve COD of more than 0.2 (i.e., more than 20% 
explained variance) for certain cognitive (e.g., processing 
speed) and physical (e.g., endurance) measures, while 
other phenotypes (e.g., positive affect) still could not 
achieve better than chance prediction (COD < 0).

We also observe that prediction accuracy was gener-
ally higher in the HCP-Aging dataset than in the HCP-YA 
dataset. One reason might be because the UK Biobank 
comprised middle-aged and elderly participants, so 
might generalize better to elderly participants in the 
HCP-Aging dataset than young adults in the HCP-YA 
dataset. A second reason might be that the relationship 
between interindividual variability in brain structure and 
phenotypic measures is stronger in elderly participants 
than in younger adults because of the well-known 
effects of aging on brain structure (Jockwitz et al., 2019; 
Kuznetsova et al., 2016). Clear evidence for the second 
reason comes from the fact that the elastic net baseline 

also performed better in the HCP-Aging dataset than in 
the HCP-YA dataset.

4.2.  Interpreting meta-matching models

Meta-matching models can be interpreted at the level of 
imaging features by using the Haufe transform (Haufe 
et al., 2014). To illustrate this procedure, we applied the 
Haufe transform (Haufe et  al., 2014) to the translated 
meta-matching stacking models in the HCP-Aging data-
set (Fig.  12). For a given meta-test phenotype, Haufe 
transform was calculated as the covariance between the 
phenotype’s prediction based on the meta-matching 
stacking model and the intensity value of each T1 voxel 
(across K participants), yielding a 3D volume. We found 
that poorer cognitive performance in terms of worse 
RAVLT and MOCA scores was related to greater gray-
matter atrophy and larger ventricular size, which is con-
sistent with the aging literature (Apostolova et al., 2012; 
Ritter et al., 2017). Meta-matching finetune can be inter-
preted in a similar fashion.

In addition to interpreting meta-matching models at 
the level of brain-imaging features, the meta-matching 
models can also be interpreted at the level of pheno-
typic traits. In the case of meta-matching stacking, this 
can again be achieved using the Haufe transform. To 
illustrate this, let us consider the pretrained 3D CNN 
model from the UK Biobank with 67 prediction outputs. 
This 3D CNN model can be translated to predict a new 
meta-test phenotype using K participants from the 
meta-test set using the stacking procedure. The Haufe 
transform can then be calculated as the covariance 
(across the K participants) between the phenotype’s 
prediction from the final stacking model and the 67 
inputs to the stacking model, yielding a vector of length 
67, which indicates the relative importance of the origi-
nal 67 meta-training phenotypes for predicting the 
meta-test phenotype.

4.3.  Limitations and future work

Because meta-matching exploits correlations between 
the phenotypes of meta-training and meta-test sets, the 
amount of prediction improvement strongly relied on the 
strongest correlations between the meta-test phenotype 
and meta-training phenotypes (Fig.  11). Consequently, 
not all phenotypes might benefit from meta-matching. 
However, we note that this limitation exists for all meta-
learning and transfer learning algorithms—model transfer 
is easier if the source and target domains are more simi-
lar; performance will degrade if source and target domains 
are very different.
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The mismatch between meta-test and meta-training 
phenotypes can be accentuated by population differences 
or lack of diversity in the meta-training set (Greene et al., 
2022; Li et  al., 2022). Since our current study utilized a 
single source dataset (UK Biobank), the meta-matching 
models might not generalize as well to new populations, 
e.g., of different ethnicity or age. In our study, meta-
matching still outperformed classical elastic net in young 
adults from North America (HCP-YA datasets), but we 
could potentially achieve even better results if meta-
matching models were trained on a wider range of source 
datasets that included young adults from North America. 
An important future direction is to develop meta-matching 
models based on multiple diverse T1 datasets. We have 
recently developed meta-matching variants (dataset 
stacking and multilayer meta-matching) for resting-state 
functional connectivity (Chen et al., 2023), which could be 
adapted to T1 data.

Beyond RSFC from our previous studies (Chen et al., 
2023; He et al., 2020) and T1 measures considered in this 
study, we can in principle extend meta-matching to other 
MRI modalities (e.g., diffusion MRI) and non-MRI data 
(e.g., electroencephalogram). Other T1 measures, such as 
surface area, sulcal depth, and curvature, could also be 
considered. Fusion of meta-matching models across 
modalities might potentially improve prediction perfor-
mance, although we note that such an improvement is not 
a guaranteed outcome. For example, our previous study 
(Ooi et al., 2022) found that integrating T1, diffusion, and 
functional connectivity measures within a multikernel 
regression framework did not improve prediction accuracy 
in young healthy participants over just functional connec-
tivity alone. However, this negative finding (Ooi et al., 2022) 
might not generalize to meta-matching and other popula-
tions. One tricky issue arising from multiple modality fusion 
is dealing with inevitable missing modality in a new test 
participant, which is still an unsolved problem.

Finally, in the current study, we trained our meta-
matching model based on the FSL MNI152 template 
space because it is the most popular standard space in 
the literature and also because the major datasets (in this 
case, UK Biobank, HCP-Aging, HCP-YA) provide T1 data 
in that space. Researchers using other volumetric coordi-
nate systems, e.g., Colin27 (Holmes et  al., 1998) and 
SPM MNI152 (Mazziotta et al., 2001), might not be able 
to benefit as much from our models. However, unlike dif-
ferent RSFC atlases (Craddock et al., 2012; Gordon et al., 
2016; Schaefer et al., 2018; Shen et al., 2013; Yan et al., 
2023; Yeo et  al., 2011), the different volumetric spaces 
are probably not as different. As such, it is entirely possi-
ble that our meta-matching procedure on the K partici-
pants in other coordinate systems (e.g., Colin27 or SPM 

MNI152) might overcome atlas space differences, yield-
ing good performance. We leave this to future work.

4.4.  Related studies

There has been a large number of studies using T1 MRI 
to predict individual-level phenotypic traits, clinical symp-
toms, and diagnostic categories (Arbabshirani et  al., 
2017; Bhagwat et al., 2019; Cohen et al., 2021; Ooi et al., 
2022; Sabuncu et  al., 2015). However, most of these 
studies focused on within-dataset prediction, without 
considering the generalization of their predictive models 
to new datasets (Wu et al., 2023). In more recent years, 
there is a growing number of studies adapting models 
trained on large datasets to predict the same phenotype 
in new data (Holderrieth et  al., 2022; Jónsson et  al., 
2019), and more rarely, to predict a new phenotype in a 
new dataset (Leonardsen et  al., 2022; Lu et  al., 2022). 
This type of transfer learning or meta-learning is typically 
achieved by some form of finetuning of the model trained 
on one or more large-scale source datasets (Bae et al., 
2021; Dhinagar et al., 2023; Wood et al., 2024), similar to 
our transfer learning baseline. As shown in our study, 
both meta-matching variants appeared to outperform 
this type of transfer learning.

5.  CONCLUSION

In this study, we showed that meta-matching can be 
used to translate T1-based phenotypic prediction mod-
els from large source datasets to predict new phenotypes 
in small target datasets. By exploiting correlations 
between phenotypes, meta-matching greatly outper-
formed elastic net and classical transfer learning, both 
when translating models within the same dataset and 
when translating models across datasets with different 
MRI scanners, acquisition protocols, and demographics. 
Overall, our results demonstrated the versatility of the 
meta-matching framework.

DATA AND CODE AVAILABILITY

The code used in this study can be found here (https://
github​.com​/ThomasYeoLab​/CBIG​/tree​/master​/stable​
_projects​/predict​_phenotypes​/Naren2024​_MMT1). Two co
authors (Lijun An and Chen Zhang) reviewed the code 
before merging it into the GitHub repository to reduce the 
chance of coding errors. The trained models for meta-
matching are also publicly available (https://github.com 
/ThomasYeoLab/Meta_matching_models/tree/main/T1 
/v1.0). This study used publicly available data from the 
UK Biobank (https://www​.ukbiobank​.ac​.uk/), as well as 
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the HCP-YA and HCP-Aging datasets (https://www​
.humanconnectome​.org/). Data can be accessed via data 
use agreements.
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