001030925 001__ 1030925
001030925 005__ 20250804115250.0
001030925 0247_ $$2doi$$a10.1162/imag_a_00233
001030925 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05518
001030925 0247_ $$2WOS$$aWOS:001525523700001
001030925 037__ $$aFZJ-2024-05518
001030925 082__ $$a050
001030925 1001_ $$0P:(DE-HGF)0$$aChen, Pansheng$$b0
001030925 245__ $$aMultilayer meta-matching: Translating phenotypic prediction models from multiple datasets to small data
001030925 260__ $$aCambridge, MA$$bMIT Press$$c2024
001030925 3367_ $$2DRIVER$$aarticle
001030925 3367_ $$2DataCite$$aOutput Types/Journal article
001030925 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737100447_4957
001030925 3367_ $$2BibTeX$$aARTICLE
001030925 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001030925 3367_ $$00$$2EndNote$$aJournal Article
001030925 520__ $$aResting-state functional connectivity (RSFC) is widely used to predict phenotypic traits in individuals. Large sample sizes can significantly improve prediction accuracies. However, for studies of certain clinical populations or focused neuroscience inquiries, small-scale datasets often remain a necessity. We have previously proposed a “meta-matching” approach to translate prediction models from large datasets to predict new phenotypes in small datasets. We demonstrated a large improvement over classical kernel ridge regression (KRR) when translating models from a single source dataset (UK Biobank) to the Human Connectome Project Young Adults (HCP-YA) dataset. In the current study, we propose two meta-matching variants (“meta-matching with dataset stacking” and “multilayer meta-matching”) to translate models from multiple source datasets across disparate sample sizes to predict new phenotypes in small target datasets. We evaluate both approaches by translating models trained from five source datasets (with sample sizes ranging from 862 participants to 36,834 participants) to predict phenotypes in the HCP-YA and HCP-Aging datasets. We find that multilayer meta-matching modestly outperforms meta-matching with dataset stacking. Both meta-matching variants perform better than the original “meta-matching with stacking” approach trained only on the UK Biobank. All meta-matching variants outperform classical KRR and transfer learning by a large margin. In fact, KRR is better than classical transfer learning when less than 50 participants are available for finetuning, suggesting the difficulty of classical transfer learning in the very small sample regime. The multilayer meta-matching model is publicly available at https://github.com/ThomasYeoLab/Meta_matching_models/tree/main/rs-fMRI/v2.0.
001030925 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001030925 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001030925 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001030925 7001_ $$0P:(DE-HGF)0$$aAn, Lijun$$b1
001030925 7001_ $$0P:(DE-HGF)0$$aWulan, Naren$$b2
001030925 7001_ $$0P:(DE-HGF)0$$aZhang, Chen$$b3
001030925 7001_ $$0P:(DE-HGF)0$$aZhang, Shaoshi$$b4
001030925 7001_ $$0P:(DE-HGF)0$$aOoi, Leon Qi Rong$$b5
001030925 7001_ $$0P:(DE-HGF)0$$aKong, Ru$$b6
001030925 7001_ $$0P:(DE-HGF)0$$aChen, Jianzhong$$b7
001030925 7001_ $$0P:(DE-Juel1)177058$$aWu, Jianxiao$$b8$$ufzj
001030925 7001_ $$0P:(DE-HGF)0$$aChopra, Sidhant$$b9
001030925 7001_ $$0P:(DE-HGF)0$$aBzdok, Danilo$$b10
001030925 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b11$$ufzj
001030925 7001_ $$0P:(DE-HGF)0$$aHolmes, Avram J.$$b12
001030925 7001_ $$0P:(DE-HGF)0$$aYeo, B. T. Thomas$$b13$$eCorresponding author
001030925 773__ $$0PERI:(DE-600)3167925-0$$a10.1162/imag_a_00233$$gVol. 2, p. 1 - 22$$p1 - 22$$tImaging neuroscience$$v2$$x2837-6056$$y2024
001030925 8564_ $$uhttps://juser.fz-juelich.de/record/1030925/files/imag_a_00233-1.pdf$$yOpenAccess
001030925 909CO $$ooai:juser.fz-juelich.de:1030925$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001030925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177058$$aForschungszentrum Jülich$$b8$$kFZJ
001030925 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177058$$a HHU Düsseldorf$$b8
001030925 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b11$$kFZJ
001030925 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b11
001030925 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore$$b13
001030925 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Corresponding Author: B.T. Thomas Yeo (yeoyeo02+INau@gmail.com)$$b13
001030925 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001030925 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001030925 9141_ $$y2024
001030925 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001030925 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001030925 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001030925 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-09-26T09:40:26Z
001030925 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-09-26T09:40:26Z
001030925 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-09-26T09:40:26Z
001030925 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001030925 9801_ $$aFullTexts
001030925 980__ $$ajournal
001030925 980__ $$aVDB
001030925 980__ $$aUNRESTRICTED
001030925 980__ $$aI:(DE-Juel1)INM-7-20090406