001     1030925
005     20250804115250.0
024 7 _ |a 10.1162/imag_a_00233
|2 doi
024 7 _ |a 10.34734/FZJ-2024-05518
|2 datacite_doi
024 7 _ |a WOS:001525523700001
|2 WOS
037 _ _ |a FZJ-2024-05518
082 _ _ |a 050
100 1 _ |a Chen, Pansheng
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Multilayer meta-matching: Translating phenotypic prediction models from multiple datasets to small data
260 _ _ |a Cambridge, MA
|c 2024
|b MIT Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737100447_4957
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Resting-state functional connectivity (RSFC) is widely used to predict phenotypic traits in individuals. Large sample sizes can significantly improve prediction accuracies. However, for studies of certain clinical populations or focused neuroscience inquiries, small-scale datasets often remain a necessity. We have previously proposed a “meta-matching” approach to translate prediction models from large datasets to predict new phenotypes in small datasets. We demonstrated a large improvement over classical kernel ridge regression (KRR) when translating models from a single source dataset (UK Biobank) to the Human Connectome Project Young Adults (HCP-YA) dataset. In the current study, we propose two meta-matching variants (“meta-matching with dataset stacking” and “multilayer meta-matching”) to translate models from multiple source datasets across disparate sample sizes to predict new phenotypes in small target datasets. We evaluate both approaches by translating models trained from five source datasets (with sample sizes ranging from 862 participants to 36,834 participants) to predict phenotypes in the HCP-YA and HCP-Aging datasets. We find that multilayer meta-matching modestly outperforms meta-matching with dataset stacking. Both meta-matching variants perform better than the original “meta-matching with stacking” approach trained only on the UK Biobank. All meta-matching variants outperform classical KRR and transfer learning by a large margin. In fact, KRR is better than classical transfer learning when less than 50 participants are available for finetuning, suggesting the difficulty of classical transfer learning in the very small sample regime. The multilayer meta-matching model is publicly available at https://github.com/ThomasYeoLab/Meta_matching_models/tree/main/rs-fMRI/v2.0.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a An, Lijun
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wulan, Naren
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhang, Chen
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhang, Shaoshi
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ooi, Leon Qi Rong
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kong, Ru
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Chen, Jianzhong
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wu, Jianxiao
|0 P:(DE-Juel1)177058
|b 8
|u fzj
700 1 _ |a Chopra, Sidhant
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Bzdok, Danilo
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 11
|u fzj
700 1 _ |a Holmes, Avram J.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Yeo, B. T. Thomas
|0 P:(DE-HGF)0
|b 13
|e Corresponding author
773 _ _ |a 10.1162/imag_a_00233
|g Vol. 2, p. 1 - 22
|0 PERI:(DE-600)3167925-0
|p 1 - 22
|t Imaging neuroscience
|v 2
|y 2024
|x 2837-6056
856 4 _ |u https://juser.fz-juelich.de/record/1030925/files/imag_a_00233-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1030925
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)177058
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-Juel1)177058
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-Juel1)131678
910 1 _ |a Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
|0 I:(DE-HGF)0
|b 13
|6 P:(DE-HGF)0
910 1 _ |a Corresponding Author: B.T. Thomas Yeo (yeoyeo02+INau@gmail.com)
|0 I:(DE-HGF)0
|b 13
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 1
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-09-26T09:40:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-09-26T09:40:26Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-09-26T09:40:26Z
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21