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ABSTRACT

Resting-state functional connectivity (RSFC) is widely used to predict phenotypic traits in individuals. Large sample 
sizes can significantly improve prediction accuracies. However, for studies of certain clinical populations or focused 
neuroscience inquiries, small-scale datasets often remain a necessity. We have previously proposed a “meta-
matching” approach to translate prediction models from large datasets to predict new phenotypes in small datasets. 
We demonstrated a large improvement over classical kernel ridge regression (KRR) when translating models from a 
single source dataset (UK Biobank) to the Human Connectome Project Young Adults (HCP-YA) dataset. In the current 
study, we propose two meta-matching variants (“meta-matching with dataset stacking” and “multilayer meta-
matching”) to translate models from multiple source datasets across disparate sample sizes to predict new pheno-
types in small target datasets. We evaluate both approaches by translating models trained from five source datasets 
(with sample sizes ranging from 862 participants to 36,834 participants) to predict phenotypes in the HCP-YA and 
HCP-Aging datasets. We find that multilayer meta-matching modestly outperforms meta-matching with dataset 
stacking. Both meta-matching variants perform better than the original “meta-matching with stacking” approach 
trained only on the UK Biobank. All meta-matching variants outperform classical KRR and transfer learning by a large 
margin. In fact, KRR is better than classical transfer learning when less than 50 participants are available for finetuning, 
suggesting the difficulty of classical transfer learning in the very small sample regime. The multilayer meta-matching 
model is publicly available at https://github.com/ThomasYeoLab/Meta_matching_models/tree/main/rs-fMRI/v2.0.
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1.  INTRODUCTION

There is growing interest in harnessing neuroimaging 
data to predict non-neuroimaging-related phenotypes, 
such as fluid intelligence or clinical outcomes, of individ-
ual participants (Eickhoff & Langner, 2019; Gabrieli et al., 
2015; Varoquaux & Poldrack, 2019; Woo et  al., 2017). 
However, most brain-behavior prediction studies suffer 
from underpowered samples, typically involving less than 
a few hundred participants, leading to low reproducibility 
and inflated performance (Arbabshirani et  al., 2017; 
Bzdok & Meyer-Lindenberg, 2018; Marek et  al., 2022; 
Masouleh et al., 2019; Poldrack et al., 2020). Adequately 
powered sample sizes can significantly improve predic-
tion accuracy (Chu et  al., 2012; Cui & Gong, 2018; He 
et al., 2020; Schulz et al., 2020), so large-scale datasets, 
such as the UK Biobank (Miller et al., 2016; Sudlow et al., 
2015), are vital for enhancing prediction performance. 
However, for investigations of certain clinical populations 
or focused neuroscience inquiries, small-scale datasets 
often remain the norm.

We have previously proposed a “meta-matching” 
approach to translate prediction models from large data-
sets to improve the prediction of new phenotypes in small 
datasets (He et al., 2022). Meta-matching is grounded in 
the observation that many phenotypes exhibit inter-
correlations, as demonstrated by previous studies identi-
fying a small number of factors linking brain imaging data 
to various non-brain-imaging traits like cognition, mental 
health, demographics, and other health attributes (Kebets 
et al., 2019; Miller et al., 2016; Smith et al., 2015; Xia et al., 
2018). As a result, a phenotype X in a smaller-scale study 
is likely correlated with a phenotype Y present in a larger 
population dataset. This means that a machine-learning 
model trained on phenotype Y from the larger dataset 
might be more effectively translated to predict phenotype 
X in the smaller study. Meta-matching exploited these 
inter-phenotype correlations and was thus referred to as 
“meta-matching.” See Section 4 for further discussion.

In our previous study (He et  al., 2022), we trained a 
deep neural network (DNN) to predict 67 non-brain-
imaging phenotypes from resting-state functional con-
nectivity (RSFC) in the UK Biobank. The DNN was then 
translated using meta-matching to predict non-brain-
imaging phenotypes in the Human Connectome Project 
Young Adult (HCP-YA) dataset, yielding large improve-
ments over classical KRR without meta-matching. Among 
the different meta-matching variants, complementing 
“advanced meta-matching (stacking)” (which we will refer 
to as “meta-matching with stacking”) performed the best 
(He et  al., 2022). Stacking is a well-known ensemble 
learning approach (Breiman, 1996; Wolpert, 1992) and 

has also enjoyed utility in neuroimaging (Liem et al., 2017; 
Ooi et al., 2022; Rahim et al., 2017).

The original study (He et al., 2022) experimented with 
only one source dataset (UK Biobank). Using multiple 
source datasets might lead to better generalization for 
multiple reasons. First, prediction performance tends to 
increase with larger sample sizes (Chu et al., 2012; Cui & 
Gong, 2018; He et al., 2020; Schulz et al., 2020). Second, 
given acquisition, preprocessing, and demographic dif-
ferences across datasets, training on multiple source 
datasets might yield representations that are more gener-
alizable to a new target population (Abraham et al., 2017). 
Third, different datasets collect overlapping and distinct 
non-brain-imaging phenotypes. Since meta-matching 
exploits inter-phenotype correlation, training on more 
diverse phenotypes might lead to better performance. 
Here, we investigated the performance of meta-matching 
models trained from five source datasets—UK Biobank 
(Miller et al., 2016; Sudlow et al., 2015), Adolescent Brain 
Cognitive Development (ABCD) study (Volkow et  al., 
2018), Genomics Superstruct Project (GSP; Holmes 
et  al., 2015), Healthy Brain Network (HBN; Alexander 
et  al., 2017), and the enhanced Nathan Kline Institute-
Rockland sample (eNKI-RS; Nooner et al., 2012).

One major challenge is the extreme sample size imbal-
ances across source datasets, for example, the UK Bio-
bank is almost 40 times larger than the HBN dataset. 
Therefore, there might be diminishing returns from add-
ing smaller source datasets despite an increase in popu-
lation and phenotypic diversity. A second challenge is 
that the available phenotypes are different across data-
sets, so training a single DNN to predict all phenotypes is 
not straightforward. Here, we considered a naive exten-
sion of the original meta-matching with stacking approach 
by training independent prediction model(s) in each 
source dataset, and then performed stacking on the out-
puts of the prediction models in the target dataset. We 
refer to this extension as “meta-matching with dataset 
stacking.” Because meta-matching can improve the pre-
diction of smaller datasets, we also proposed an alterna-
tive “multilayer meta-matching” approach, which 
gradually applied meta-matching from large source data-
sets (e.g., UK Biobank) to smaller source datasets (e.g., 
GSP, HBN, etc), to generate additional features for a final 
round of stacking in the target dataset.

We evaluated the proposed approaches in two target 
datasets—HCP-YA (Van Essen et  al., 2013) and HCP-
Aging (Harms et al., 2018). We found that both approaches 
performed better than the original “meta-matching with 
stacking” approach trained only on the UK Biobank. 
Given the close relationship between meta-matching and 
transfer learning, instead of performing stacking on the 
DNN trained on the UK Biobank (i.e., meta-matching with 



3

P. Chen, L. An, N. Wulan et al.	 Imaging Neuroscience, Volume 2, 2024

stacking), we also considered a standard transfer learn-
ing baseline (Weiss et al., 2016), in which the DNN was 
finetuned on the target dataset. Of note, meta-matching 
with stacking significantly outperformed the transfer 
learning baseline. In fact, the transfer learning baseline 
was worse than classical kernel ridge regression when 
less than 50 participants were available for finetuning, 
suggesting the difficulty of transfer learning in the very 
small sample regime. Finally, we found that multilayer 
meta-matching modestly outperformed meta-matching 
with dataset stacking.

2.  METHODS

2.1.  Datasets

As illustrated in Figure 1, we used five source datasets for 
meta-training: the UK Biobank (Miller et al., 2016; Sudlow 
et  al., 2015), the Adolescent Brain Cognitive Develop-
ment (ABCD) study (Volkow et al., 2018), the Genomics 
Superstruct Project (GSP; Holmes et  al., 2015), the 
Healthy Brain Network (HBN; Alexander et al., 2017) proj-
ect, and the enhanced Nathan Kline Institute-Rockland 
sample (eNKI-RS; Nooner et al., 2012). The models from 
the five datasets were then adapted for phenotypic pre-
diction in two meta-test datasets: Human Connectome 
Project Young Adults (HCP-YA; Van Essen et al., 2013) 
and HCP-Aging (Harms et al., 2018). All data collection 
and analysis procedures were approved by the respec-
tive Institutional Review Boards (IRBs), including the 

National University of Singapore IRB for the analysis pre-
sented in this paper.

The summary information of the datasets is listed in 
Table 1. Detailed information about the non-brain-imaging 
phenotypes (henceforth referred to as phenotypes) used 
can be found in Tables S2 to S8. The phenotypes cov-
ered a broad range of behavioral domains, ranging from 
cognitive performance, personality measures, lifestyle, 
and mental health scores. The following subsections 
describe each dataset and corresponding preprocessing 
procedures in greater detail.

We note that these datasets were opportunistically 
collated (e.g., by contacting potential collaborators or by 
downloading preprocessed data provided by the study), 
so the preprocessing steps varied considerably across 
datasets. However, we consider the heterogeneous pre-
processing as a strength because the heterogeneity 
might help to improve (and demonstrate) generalization 
across preprocessing pipelines.

The phenotypes were predicted using 419 × 419 RSFC 
matrices, consistent with previous studies from our group 
(Chen et al., 2022; Kong et al., 2021; Li et al., 2022). The 
419 × 419 RSFC matrices were computed using 400 cor-
tical (Schaefer et  al., 2018) and 19 subcortical parcels 
(Fischl et al., 2002). We note that the Schaefer parcella-
tion is a group-level parcellation available in fsaverage, 
MNI, and fsLR space. For each participant, RSFC was 
computed as the Pearson’s correlations between the 
average time series of each pair of brain parcels.

2.1.1.  UK Biobank

The UK Biobank (UKBB) dataset is a population epidemi-
ology study with 500,000 adults (age 40–69  years) 
recruited between 2006 and 2010 (Miller et  al., 2016; 
Sudlow et al., 2015). We utilized fMRI data from 36,834 
participants and 67 phenotypes (selected from a total of 
3,937 phenotypes) from the UK Biobank dataset. The 
detailed phenotypic selection procedures followed our 
previous study (He et al., 2022). The sample size is slightly 
smaller than our previous study (He et al., 2022) because 
of participants voluntarily withdrawing from the UK Bio-
bank study. More specifically, ICA-FIX pre-processed vol-
umetric rs-fMRI time series in native participant space 
were downloaded from the UK Biobank (Alfaro-Almagro 
et  al., 2018). The time series were then projected to 
MNI152 2-mm template space, and averaged within each 
cortical and each subcortical parcel. Here, the cortical 
parcels were based on the Schaefer parcellation in MNI152 
space, while the subcortical parcels were obtained by 
FreeSurfer recon-all of the MNI152 template. Pearson’s 
correlations were used to generate the 419 × 419 RSFC 
matrices.

Fig. 1.  Schematic of meta-training and meta-test sets. 
Datasets were assigned to meta-training set and meta-test 
set. Prediction models from the meta-training set were 
adapted to K participants from each meta-test dataset 
to predict target phenotypes. The adapted models were 
evaluated in the remaining N – K participants from the 
meta-test dataset. This procedure was repeated 100 times 
for stability. The meta-training set was differentiated into 
extra-large-scale (UK Biobank; dark blue), large-scale 
(ABCD; blue), and medium-scale (GSP, HBN, and eNKI-RS; 
light blue) source datasets.
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2.1.2.  ABCD

The adolescent brain cognitive development (ABCD) is a 
dataset of children (age 9–10 years) and a diverse set of 
behavioral measures (Volkow et al., 2018). We considered 
data from 11,875 children from the ABCD 2.0.1 release. 
We used 36 phenotypes in total, including 16 cognitive 
measures, 9 personality measures, and 11 mental health 
measures, consistent with our previous studies (Chen 
et al., 2022; Ooi et al., 2022).

Details of the fMRI preprocessing can be found in pre-
vious studies (Chen et al., 2022; Ooi et al., 2022) but briefly, 
minimally preprocessed fMRI data (Hagler Jr et al., 2019) 
were further processed with the following steps: (1) 
removal of initial frames (number of frames removed 
depended on the type of scanner; Hagler Jr et al., 2019); 
(2) alignment with the T1 images using boundary-based 
registration (BBR; Greve & Fischl, 2009) with FsFast (http://
surfer​.nmr​.mgh​.harvard​.edu​/fswiki​/FsFast); (3) respiratory 
pseudomotion motion filtering was performed by applying 
a bandstop filter of 0.31–0.43  Hz (Fair et  al., 2020); (4) 
functional runs with BBR costs greater than 0.6 were 
excluded; and (5) motion correction and outlier detection: 
framewise displacement (FD; Jenkinson et al., 2002) and 
voxel-wise differentiated signal variance (DVARS; Power 
et al., 2012) were computed using fsl_motion_outliers. Vol-
umes with FD > 0.3 mm or DVARS > 50, along with one 
volume before and two volumes after, were marked as 
outliers (i.e., censored frames). Uncensored segments of 
data containing fewer than five contiguous volumes were 
also censored (Gordon et  al., 2016; Kong et  al., 2019). 
BOLD runs with over half of frames censored and runs 
with max FD > 5 mm were removed; (6) the following nui-
sance covariates were regressed out of the fMRI time 
series: a vector of ones and linear trend, global signal, six 
motion correction parameters, averaged ventricular sig-
nal, averaged white matter signal, and their temporal 
derivatives. Regression coefficients were estimated from 
the non-censored volumes; (7) interpolation of censored 
frames with Lomb-Scargle periodogram (Power et  al., 
2014); (8) band-pass filtering (0.009 Hz ≤ f ≤ 0.08 Hz); (9) 
projection onto FreeSurfer (Fischl, 2012) fsaverage6 sur-

face space; and (10) smoothing by a 6 mm full-width half-
maximum (FWHM) kernel.

We also excluded participants who did not have at 
least 4  minutes for rs-fMRI and excluded participants 
without all 36 phenotypes, resulting in 5,985 participants. 
For each participant, the fMRI time series were averaged 
within each cortical and subcortical parcel. Here, the cor-
tical parcels were based on the Schaefer parcellation in 
fsaverage space, while the subcortical parcels (from 
FreeSurfer recon-all) were projected from the partici-
pant’s T1 native volumetric space to the participant’s 
fMRI native volumetric space. Pearson’s correlations 
were used to generate the 419 × 419 RSFC matrices.

2.1.3.  GSP

The Brain Genomics Superstruct Project (GSP) contains 
fMRI and multiple behavioral measures from healthy 
young adults aged 18 to 35  years old (Holmes et  al., 
2015). We used 23 behavioral phenotypes, including 
cognitive and personality measures, consistent with our 
previous study (J. Li et al., 2019).

Details of the fMRI preprocessing can be found in pre-
vious studies (J. Li et  al., 2019), but briefly, the pipeline 
comprised the following steps: (1) removal of the first four 
frames; (2) slice time correction with FSL (Jenkinson et al., 
2012; Smith et al., 2004) package; and (3) motion correc-
tion and outlier detection: FD and DVARS were estimated 
using fsl_motion_outliers. Volumes with FD > 0.2 mm or 
DVARS > 50 were marked as outliers (censored frames). 
One frame before and two frames after these volumes 
were flagged as censored frames. Uncensored segments 
of data lasting fewer than five contiguous volumes were 
also labeled as censored frames (Gordon et  al., 2016). 
BOLD runs with more than half of the volumes labeled as 
censored frames were removed; (4) alignment with struc-
tural image using boundary-based registration with FsFast 
(Greve & Fischl, 2009); (5) regress the following nuisance 
regressors: a vector of ones and linear trend, six motion 
correction parameters, averaged white matter signal, 
averaged ventricular signal, mean whole-brain signal, and 
their temporal derivatives. Regression coefficients were 

Table 1.  Summary information of datasets used in the current study.

Datasets #Participants Age range Preprocessing notes #Phenotypes

Meta-training datasets UK Biobank 36,834 45-82 ICA-FIX & MNI152 67
ABCD 5,985 9-10 GSR & fsaverage6 36
GSP 862 18-35 GSR & fsaverage6 23
HBN 930 5-21 GSR & fsaverage6 42
eNKI-RS 896 6-85 ICA-AROMA & MNI152 61

Meta-test datasets HCP-YA 1,019 22-35 ICA-FIX & fs_LR32k 35
HCP-Aging 656 36-100+ ICA-FIX & MNI152 45

http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast
http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast
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estimated from the non-censored volumes; (6) interpola-
tion of censored frames with Lomb-Scargle periodogram; 
(7) band-pass filtering (0.009 Hz ≤ f ≤ 0.08 Hz); (8) projec-
tion onto the FreeSurfer fsaverage6 surface space; and (9) 
smoothing with 6 mm FWHM and down-sampling to fsav-
erage5 surface space.

We also removed participants without full 23 pheno-
types, yielding 862 participants. For each participant, the 
fMRI time series were averaged within each cortical and 
subcortical parcel. Here, the cortical parcels were based 
on the Schaefer parcellation in fsaverage space, while the 
subcortical parcels (from FreeSurfer recon-all) were pro-
jected from the participant’s T1 native volumetric space to 
the participant’s fMRI native volumetric space. Pearson’s 
correlations were used to generate the 419 × 419 RSFC 
matrices.

2.1.4.  HBN

The Healthy Brain Network (HBN) contains New York 
area participants (age 5–21  years) with brain imaging, 
psychiatric, behavioral, cognitive, and lifestyle informa-
tion (Alexander et al., 2017). We downloaded data from 
2,196 participants (HBN release 1–7). We manually 
selected commonly used cognitive performance scores 
and behavioral scores with less than 10% of missing val-
ues, resulting in 42 phenotypes.

Resting-state fMRI data were pre-processed with the 
following steps: (1) removal of the first 8 frames; (2) slice 
time correction; (3) motion correction and outlier detec-
tion: frames with FD  >  0.3  mm or DVARS  >  60 were 
flagged as censored frames. 1 frame before and 2 frames 
after these volumes were flagged as censored frames. 
Uncensored segments of data lasting fewer than five 
contiguous frames were also labeled as censored frames. 
BOLD runs with over half of the frames censored and 
runs with max FD > 5 mm were removed; (4) correcting 
for spatial distortion caused by susceptibility-induced 
off-resonance field; (5) alignment with structural image 
using boundary-based registration; (6) nuisance regres-
sion: regressed out a vector of ones and linear trend, 
global signal, six motion correction parameters, averaged 
ventricular signal, averaged white matter signal, and their 
temporal derivatives. Regression coefficients were esti-
mated from the non-censored volumes; (7) band-pass 
filtering (0.009 Hz ≤ f ≤ 0.08 Hz); (8) interpolation of cen-
sored frames with Lomb-Scargle periodogram; (9) pro-
jection onto the FreeSurfer fsaverage6 surface space; 
and (10) smoothing with 2 mm FWHM and down-sampling 
to fsaverage5 surface space.

We excluded individuals who did not have at least 
4 minutes of uncensored rs-fMRI data and removed par-
ticipants with no relevant phenotypes, resulting in 930 

participants. For each participant, the fMRI time series 
were averaged within each cortical and subcortical par-
cel. Here, the cortical parcels were based on the Schae-
fer parcellation in fsaverage space, while the subcortical 
parcels (from FreeSurfer recon-all) were projected from 
the participant’s T1 native volumetric space to the partic-
ipant’s fMRI native volumetric space. Pearson’s correla-
tions were used to generate the 419 × 419 RSFC matrices.

2.1.5.  eNKI-RS

The enhanced Nathan Kline Institute-Rockland Sample 
(eNKI-RS) is a community sample of over 1,000 partici-
pants (age 6–85 years), with measures including various 
physiological and psychological assessments, genetic 
information, and neuroimaging data (Nooner et al., 2012). 
We manually selected commonly used cognitive perfor-
mance measures and behavioral scores with less than 
10% of missing value, yielding 61 phenotypes and 896 
participants with at least one phenotype.

Details of the fMRI preprocessing can be found in our 
previous study (Wu et al., 2022), but briefly, eNKI-RS data 
were pre-processed with fMRIprep (Esteban et al., 2019) 
with default configuration and additional ICA-AROMA 
denoising (Pruim, Mennes, Buitelaar, et al., 2015; Pruim, 
Mennes, van Rooij, et  al., 2015). Additional nuisance 
regression was then performed with regressors corre-
sponding to 24 motion parameters, white matter signal, 
CSF signal, and their temporal derivatives (Wu et  al., 
2022). The pre-processed fMRI data in MNI152 space 
were used to compute 419 × 419 RSFC matrices. Here, 
the cortical parcels were based on the Schaefer parcella-
tion in MNI152 space, while the subcortical parcels were 
obtained by FreeSurfer recon-all of the MNI152 template.

2.1.6.  HCP-YA

The Human Connectome Project (HCP Young Adult, 
HCP-YA) contains brain imaging data and phenotypes 
from healthy young adults (age 22–35 years) (Van Essen 
et al., 2013). We used 35 phenotypes across cognition, 
personality, and emotion, consistent with our previous 
study (He et al., 2022). There are 1,019 participants with 
all 35 phenotypes in the end.

For the RSFC data, we used ICA-FIX MSMALL time 
series in the grayordinate (combined surface and subcor-
tical volumetric) fsLR_32k space (Glasser et  al., 2013). 
The time series were averaged within each cortical and 
subcortical parcel to calculate 419 × 419 RSFC matrices. 
Here, the cortical parcels were based on the Schaefer 
parcellation in fsLR space, while the subcortical parcels 
were defined by the HCP preprocessing pipeline based 
on FreeSurfer (Glasser et al., 2013).
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2.1.7.  HCP-Aging

The Human Connectome Project Aging (HCP-Aging) 
study enrolls 1,500+ healthy adults (age 36–100+ years) 
(Harms et  al., 2018). We manually selected commonly 
used behavioral measures, resulting in 45 phenotypes 
and 656 participants with at least one phenotype. The 
resting-fMRI data after ICA-FIX denoising in MNI152 
space were used, following our previous study (Wu et al., 
2022). Nuisance regression was then implemented, con-
trolling for 24 motion parameters, white matter signal, 
CSF signal, and their temporal derivatives (Wu et  al., 
2022). The time series were averaged within each cortical 
and subcortical parcel to calculate 419  ×  419 RSFC 
matrices. Here, the cortical parcels were based on the 
Schaefer parcellation in MNI152 space, while the subcor-
tical parcels were obtained by FreeSurfer recon-all of the 
MNI152 template.

2.2.  Data split overview

We split the datasets into a meta-training (source) set and 
a meta-test (target) set, as shown in Figure 1. For each 
meta-training dataset, we randomly divided the partici-
pants into training and validation sets comprising 80% 
and 20% of the participants respectively. The training 
and validation sets are used to train and tune the hyper-
parameters of one or more “base-learners” to predict 
corresponding source phenotypes from the meta-training 
dataset. We note that the splits into training and valida-
tion sets were completely random, and no attempt was 
made to match the demographics (e.g., age and sex) 
between training and validation sets. Matching demo-
graphics between training and validation sets might 
potentially improve the prediction in the validation sets, 
but it is unclear whether this would be helpful for the 
meta-test set, whose demographics might differ from the 
meta-training sets. In fact, one might even speculate that 
demographic differences between training and validation 
sets could help the base-learners to be more robust to 
demographic differences between meta-training and 
meta-test datasets.

For each meta-test dataset, there are target pheno-
types we want to predict from RSFC. For cross-dataset 
prediction, we trained a “meta-learner” using K partici-
pants in the meta-test dataset (i.e., where K = 10, 20, 
50, 100, 200) with observed meta-test phenotypes, 
which is a setting known as “K-shot learning” (Kadam & 
Vaidya, 2020). The meta-learner exploits the relation-
ship between source and target phenotypes via the pre-
viously trained base-learners from the meta-training 
datasets, thus transferring knowledge from the meta-
training datasets to the meta-test dataset. Finally, we 

evaluated the prediction performance of meta-test phe-
notypes on the remaining N – K meta-test participants, 
using Pearson’s correlation and predictive coefficient of 
determinant (COD) as metrics.

2.3.  Prediction approaches

Across all approaches, we vectorized the lower triangular 
entries of each 419 × 419 RSFC matrix into a feature vec-
tor (i.e., 87,571 ×  1 vector) to predict phenotypic mea-
sures. We note that certain datasets were processed with 
global signal regression (GSR), while others were pro-
cessed with ICA-FIX (Table 1). It is well known that GSR 
centers the distribution of RSFC values at zero (Murphy 
et al., 2009), which is not the case for ICA-FIX. Therefore, 
for all cross-dataset algorithms (i.e., all algorithms except 
kernel ridge regression), we normalized the RSFC vector 
for each participant independently, by subtracting the 
mean and then dividing by the L2-norm of the 87,571 × 1 
FC vector. Although we did not perform this normaliza-
tion for classical kernel ridge regression (Section 2.3.1), 
we note that this normalization has no effect on kernel 
ridge regression. The reason is that we used the correla-
tion metric to compute the kernel similarity (Section 2.3.1), 
so Pearson’s correlation between two normalized RSFC 
matrices will be the same as Pearson’s correlation 
between two unnormalized RSFC matrices.

Following our previous study (He et al., 2022), statisti-
cal difference between algorithms was evaluated using a 
bootstrapping approach (more details in Supplementary 
Methods S3). Multiple comparisons were corrected using 
a false discovery rate (FDR) of q < 0.05. FDR was applied 
to all K-shots, across all pairs of algorithms and both 
evaluation metrics (Pearson’s correlation and COD).

2.3.1.  Baseline 1: Classical KRR

We choose kernel ridge regression (KRR; Fig.  2A) as a 
baseline algorithm that does not utilize meta-training on 
the meta-training set. KRR has been shown to be a highly 
competitive algorithm for MRI prediction of phenotypic 
measures (He et al., 2020; Kong et al., 2023; Ooi et al., 
2022). Consistent with our previous studies, the kernel 
similarity between participants was defined based on 
similarity (Pearson’s correlation) between the lower trian-
gular portions of the RSFC matrices. More specifically, 
the procedure is as follows. Suppose the meta-test data-
set has N participants in total. For each target phenotype 
in the meta-test dataset, we trained a KRR model and 
tuned the hyper-parameter λ (L2 regularization weight) 
with 5-fold cross-validation, using K random participants 
with observed target phenotypes (i.e., K-shot). The opti-
mal λ was then used to train a final KRR model using all 
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K participants. We then evaluated the model performance 
on the remaining N – K participants using Pearson’s cor-
relation and COD. The procedure was repeated 100 times 
with a different random set of K participants. The evalua-
tion metrics were averaged across the 100 repetitions to 
ensure the robustness of the results.

2.3.2.  Baseline 2: Transfer learning

As a second baseline, we consider transfer learning 
(Weiss et al., 2016). As illustrated in Figure 2A, we pre-
trained a deep neural network (DNN) in the UK Biobank to 
simultaneously predict 67 source phenotypes from RSFC 
(maximum training epochs = 100). The DNN is a simple 
fully-connected feedforward neural network (also known 
as a multi-layer perceptron) with 67 output nodes. Recti-
fying linear units (ReLU) were used as activation func-
tions for all hidden layers. As mentioned in Section 2.2, 
80% of the data was used for training and 20% was used 
for tuning DNN hyper-parameters. The hyper-parameters 
(e.g., number of layers, number of nodes, learning rate, 
dropout rate, etc.) were tuned using the Optuna package 
(Akiba et al., 2019). As a final step, we used 80% of the 

data for training with the optimal hyperparameters, and 
the remaining 20% of data for early stopping to reduce 
the possibility of overfitting. Detailed information about 
DNN hyper-parameters is found in Supplementary Meth-
ods S1.

The pre-trained DNN was then translated using K 
meta-test participants to predict a target phenotype. 
Because we are predicting different phenotypes in the 
meta-test dataset, for a given target phenotype, the last 
layer of the pre-trained DNN was re-initialized from 
scratch, and the last two layers of the DNN were then 
fine-tuned on K random participants with observed target 
phenotypes (i.e., K-shot). An optimal fixed learning rate 
was obtained by 5-fold cross-validation and grid search 
of the K participants. The optimal learning rate was then 
used to perform fine-tune a final model using all K partic-
ipants. For both the 5-fold cross-validation and the final 
round of fine-tuning, the maximum fine-tuning epochs 
was set to be 10 with 80% of K participants used for 
training and 20% used to evaluate validation loss for 
early stopping, to reduce the possibility of overfitting. 
This final trained model was evaluated in the remaining  
N – K participants.

Fig. 2.  Schematic of different approaches. (A) Schematic of three baselines: classical kernel ridge regression (KRR), 
transfer learning, and meta-matching with stacking from our previous study (He et al., 2022). (B) Schematic of two 
proposed approaches: meta-matching with dataset stacking and multilayer meta-matching. Observe the large sample 
imbalance in the meta-training set with the smallest source dataset comprising 862 participants and the largest source 
dataset comprising 36,834 participants.
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2.3.3.  Baseline 3: Meta-matching with stacking

The third baseline is the “meta-matching with stacking” 
algorithm (Fig. 2A) from the original meta-matching study 
(He et  al., 2022). The original study proposed several 
meta-matching algorithms. Here, we used the stacking 
approach because it exhibited the best prediction perfor-
mance in the original study.

Similar to transfer learning, the meta-matching with 
stacking approach utilized the same pre-trained DNN 
from the UK Biobank (see Section  2.3.2). To adapt the 
DNN to the meta-test dataset, the DNN was applied to the 
RSFC of the K participants, yielding 67 predictions per 
participant. The 67 predictions were then used as features 
to train a KRR model for predicting the target phenotype 
using the K participants (i.e., stacking; Wolpert, 1992).

The KRR model utilized the correlation kernel, and the 
KRR hyperparameter λ was tuned using grid search and 
5-fold cross-validation on the K participants. The optimal 
λ was then used to train a final KRR model using all K 
participants. The prediction performances were evalu-
ated on the remaining N – K participants using Pearson’s 
correlation and COD as metrics. This procedure was 
repeated 100 times with a different random sample of K 
participants.

It is worthwhile highlighting a deviation from the origi-
nal meta-matching with stacking implementation (He 
et al., 2022). The original implementation utilized K fea-
tures for stacking when K < 67. Here, we decided to sim-
ply use all 67 features because experimentation after the 
publication of our previous study (not shown) suggested 
the constraint was unnecessary.

2.3.4.  Meta-matching with dataset stacking

A naive approach to extending meta-matching with stack-
ing to multiple datasets is to train independent prediction 
model(s) in each meta-training (source) dataset and then 
“stack” the prediction models based on K participants in 
the meta-test dataset. We refer to this approach as meta-
matching with dataset stacking (Fig. 2B).

For the UK Biobank, we trained a DNN model to pre-
dict 67 phenotypes, as well as 67 Linear Ridge Regres-
sion (LRR) models to predict 67 phenotypes, to improve 
prediction performance via ensemble learning (Dietterich, 
2000), yielding 67 × 2 = 138 predictions. We note that the 
original version of our manuscript utilized KRR instead of 
LRR. However, KRR requires computing the similarity 
between a test individual’s FC with the training individu-
als’ FC. The implication is that a researcher applying 
meta-matching to their own small dataset would require 
access to the original FC data from the meta-training set, 
which is undesirable.

We note that the DNN model is identical to the pre-
trained DNN from the transfer learning baseline. The 
remaining four datasets (ABCD, GSP, HBN, eNKI-RS) 
were a lot smaller than the UK Biobank, so instead of 
training a DNN, we simply trained an LRR model for each 
source phenotype and each meta-training dataset. The 
regularization hyperparameter λ was tuned using grid 
search and 5-fold cross-validation on the full dataset, and 
the optimal λ was then used to train a final LRR model 
using the full dataset. The LRR and DNN models were 
applied to the RSFC of the K participants (of the meta-
test dataset), yielding a total of 67 × 2 + 36 + 23 + 42 + 
61 = 296 phenotypic predictions for each participant.

Similar to the meta-matching with stacking approach 
(Section 2.3.3), the predictions were then used as fea-
tures to train a KRR model for predicting the target phe-
notype using the K participants (i.e., stacking). The KRR 
model utilized the correlation kernel, and the KRR hyper-
parameter λ was tuned using grid search and 5-fold 
cross-validation on the K participants. The optimal λ 
was then used to train a final KRR model using all K par-
ticipants.

The prediction performances were evaluated on the 
remaining N – K participants using Pearson’s correlation 
and COD as metrics. This procedure was repeated 100 
times with a different random sample of K participants.

2.3.5.  Multilayer meta-matching

As an alternative to “meta-matching with dataset stack-
ing,” we made use of the fact “meta-matching with stack-
ing” can improve the prediction of smaller datasets. 
Therefore, “multilayer meta-matching” (Fig. 2B) gradually 
applied meta-matching with stacking from relatively large 
source datasets (e.g., UK Biobank) to smaller datasets 
(e.g., GSP, HBN, etc), to generate additional features for 
a final round of stacking using the K participants from the 
meta-test dataset.

In the current study, we instantiated multilayer meta-
matching by dividing the meta-training datasets into 
three groups: extra-large source dataset (comprising only 
UK Biobank in the current study), large source datasets 
(comprising only ABCD in the current study), and medium 
source datasets (comprising GSP, HBN, and eNKI-RS in 
the current study). Multilayer meta-matching proceeds as 
follows (Fig. 3).

In the case of the extra-large dataset (UK Biobank), we 
have previously trained DNN and LRR models to predict 
67 phenotypes (Section  2.3.4). The same two models 
were applied to the K meta-test dataset participants, 
yielding 67 × 2 = 134 phenotypic predictions, which will 
be concatenated with the predictions from the other 
models (below) for stacking.
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In the case of the large dataset (ABCD), we have previ-
ously trained an LRR model to predict 36 phenotypes in 
the ABCD dataset (Section 2.3.4). The same model was 
applied to the K meta-test dataset participants, yielding 
36 predictions. Furthermore, the DNN and LRR models 
from the extra-large dataset (UK Biobank) were also com-
bined to predict the 36 ABCD phenotypes via the meta-
matching with stacking procedure (He et al., 2022). The 
resulting stacking model was applied to the K meta-test 
dataset participants, yielding 36 predictions. Therefore, 
models from the ABCD dataset yielded a total of 
36 × 2 = 72 phenotypic predictions for each of the K meta-
test dataset participants, which will be concatenated with 
the 134 predictions from the UK Biobank (above) and pre-
dictions from the other models (below) for stacking.

Finally, in the case of the medium source dataset (GSP, 
HBN, or eNKI-RS), let us use the GSP dataset, which had 
23 phenotypes, as an example. First, we have previously 
trained an LRR model to predict 23 phenotypes in the 
GSP dataset (Section 2.3.4). The same model was applied 
to the K meta-test dataset participants, yielding 23 pre-
dictions. Second, the DNN and LRR models from the 
extra-large dataset (UK Biobank), as well as the LRR 
models from the large dataset (ABCD) were also com-
bined to predict the 23 GSP phenotypes via the meta-
matching with stacking procedure (He et al., 2022). The 
resulting stacking model was applied to the K meta-test 
dataset participants, yielding 23 predictions. Therefore, in 
total, the GSP dataset contributed 23 × 2 = 46 phenotypic 
predictions in each of the K meta-test dataset partici-
pants. Similarly, the HBN and eNKI-RS datasets contrib-
uted 42 × 2 = 84 and 61 × 2 = 122 phenotypic predictions.

Finally, all the phenotypic predictions (134 + 72 + 46 + 
84 + 122 = 458) were concatenated and used to train a 

KRR model on the K meta-test dataset participants (i.e., 
stacking). Once again, the KRR model utilized the cor-
relation kernel and the KRR hyperparameter λ was tuned 
using grid search and 5-fold cross-validation on the K 
participants. The optimal λ was then used to train a final 
KRR model using all K participants.

The prediction performances were evaluated on the 
remaining N – K participants using Pearson’s correlation 
and COD as metrics. This procedure was repeated 100 
times with a different random sample of K participants.

It is worth noting that the number of features used by 
the final stacking procedure was 458 in multilayer meta-
matching, compared with 296 features in meta-matching 
with dataset stacking. More specifically, the number of 
features directly generated the UK Biobank models is 
134 for both approaches. In the case of the large and 
medium-sized datasets, the number of features are dou-
bled from 36 (ABCD), 23 (GSP), 42 (HBN), and 61 
(eNKI-RS) to 72, 46, 84, and 122 respectively. We note 
that 458 features are still of much lower dimensionality 
than the raw FC matrices.

2.4.  Feature importance based  
on the Haufe transform

Here, we are adapting models pre-trained with different 
phenotypes to predict new phenotypes in a meta-test 
dataset with potentially different demographics from the 
source datasets. A potential concern is that the interpre-
tation of these adapted models (meta-matching or trans-
fer learning models) might be “tainted” by this pre-training. 
To quantify this bias that might arise from pre-training, we 
needed to define a ground truth. Here, we assumed that 
the full HCP-YA and HCP-Aging datasets are sufficiently 

Fig. 3.  Multilayer meta-matching. We divided source datasets into extra-large (UK Biobank), large (ABCD), and medium 
(GSP/HBN/eNKI-RS) source datasets. Multi-layer meta-matching gradually applied meta-matching with stacking from 
relatively large source datasets (e.g., UK Biobank) to smaller datasets (e.g., HCP), to generate additional features for a final 
round of stacking using the K participants from the meta-test dataset.
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large, so that a model trained with the full dataset to pre-
dict a particular meta-test phenotype will not be biased 
by the pre-training (since there is no pre-training).

However, what predictive model should be used in this 
analysis? Since KRR has been shown to be a highly com-
petitive algorithm for MRI prediction of phenotypic mea-
sures (He et al., 2020; Kong et al., 2023; Ooi et al., 2022), 
we decided to train a KRR model on the full HCP-YA (or 
HCP-Aging) dataset and then applied the Haufe trans-
form to the KRR model to generate pseudo ground truth 
feature importance weights. The Haufe transform 
involved computing the covariance between each FC 
edge and the phenotypic prediction across all partici-
pants in the meta-test set (Chen et al., 2022; Haufe et al., 
2014). The result is a feature importance value for each 
RSFC edge. A positive (or negative) feature importance 
value indicates that higher RSFC for the edge was asso-
ciated with the prediction model predicting greater (or 
lower) value for the phenotype.

We chose the Haufe transform because it has been 
shown to be optimal for linear models (Haufe et al., 2014) 
and KRR can be reformulated as a linear model of our 
use of the linear kernel. Furthermore, previous studies 
have shown that the Haufe transform led to highly-reliable 
feature importance weights, which are similar across dif-
ferent predictive models (Chen et  al., 2023; Tian & 
Zalesky, 2021), suggesting that our pseudo ground truth 
will not be sensitive to our choice of KRR as the pseudo 
ground truth predictive model.

We compared the Haufe transform of the pseudo 
ground truth with the Haufe transform for each approach 
(classical KRR, meta-matching, and transfer-learning) for 
the K = 100 scenario, which involved computing the cova-
riance between each FC edge and the phenotypic predic-
tion across the K participants (Chen et  al., 2022; Haufe 
et al., 2014). We then correlated the resulting feature impor-
tance values of each approach with the pseudo ground 
truth. We repeated this procedure 100 times, and averaged 
the correlations with the pseudo ground truth across 100 
repetitions. Given the relatively small sample (K = 100), we 
did not expect that meta-matching will yield very similar 
feature importance values as the pseudo ground truth. 
However, we hoped that the deviation between our meta-
matching models and the pseudo ground truth is not worse 
than classical KRR (trained on 100 participants).

3.  RESULTS

3.1.  Meta-matching with stacking outperformed 
classical KRR and transfer learning

Figure 4A and B show the prediction accuracy (Pearson’s 
correlation coefficient) of various approaches in the 

HCP-YA and HCP-Aging meta-test datasets respectively. 
Results were averaged across 35 HCP-YA (or 45 HCP-
Aging) phenotypes. The horizontal axis is the number of 
few-shot participants (K, where K = 10, 20, 50, 100, 200). 
The vertical axis is Pearson’s correlation of phenotypic 
prediction. Boxplots represent variability across the 100 
repetitions of sampling K participants (i.e., K-shot). Fig-
ure 5 shows results for COD. Bootstrapping results are 
shown in Figures S1 and S2, while p values are reported 
in Tables S9 and S10. All bolded p values (Tables S9 and 
S10) survived an FDR of q < 0.05.

Consistent with our previous study (He et al., 2022), 
meta-matching with stacking outperformed classical 
KRR in the HCP-YA dataset (Figs. 4A and 5A; Tables S9). 
Here, we extended the previous results by showing con-
sistent improvements over KRR in the HCP-Aging data-
set. More specifically, in the case of the HCP-YA dataset 
and K > 10 (Table S9), meta-matching with stacking was 
statistically better than classical KRR with the largest 
p < 0.01 across both evaluation metrics (Pearson’s cor-
relation and COD). In the case of HCP-Aging and K > 10 
(Table  S10), meta-matching with stacking was statisti-
cally better than classical KRR with the largest p < 0.002 
across both evaluation metrics.

Furthermore, meta-matching with stacking also out-
performed transfer learning across both datasets 
(Figs. 4A and 5A). In the case of the HCP-YA dataset and 
K ≥ 10 (Table S9), meta-matching with stacking was sta-
tistically better than transfer learning with p values <0.02 
across both evaluation metrics (Pearson’s correlation and 
COD). In the case of HCP-Aging and K ≥ 10 (Table S10), 
meta-matching with stacking was statistically better than 
transfer learning with the largest p < 0.001 across both 
evaluation metrics.

Interestingly, transfer learning performed consistently 
worse than classical KRR for K < 50, especially for the 
COD metric (Figs. 4A and 5A).

3.2.  Improvement from additional meta-training 
source datasets

By including additional meta-training datasets, meta-
matching with dataset stacking and multilayer meta-
matching were numerically better than meta-matching 
with stacking (which only utilized the UK Biobank) for 
almost all values of K (Figs. 4 and 5).

In the case of the HCP-YA dataset and K  >  100 
(Table S9), meta-matching with dataset stacking was sta-
tistically better than meta-matching with stacking with 
the largest p  <  0.001 across both evaluation metrics 
(Pearson’s correlation and COD). In the case of the HCP-
Aging and K > 20 (Table S10), meta-matching with data-
set stacking was statistically better than meta-matching 
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with stacking with the largest p < 0.001 across both eval-
uation metrics.

On the other hand, in the case of the HCP-YA dataset 
and K > 20 (Table S9), multilayer meta-matching was sta-
tistically better than meta-matching with stacking with 
the largest p < 0.03 across both evaluation metrics. In the 
case of the HCP-Aging and K > 20 (Table S10), multilayer 
meta-matching was statistically better than meta-
matching with stacking with the largest p < 0.001 across 
both evaluation metrics.

We observe that the p values for multilayer meta-
matching were generally stronger (i.e., smaller) than meta-
matching with dataset stacking and will directly compare 
the two meta-matching variants in the next section.

3.3.  Multilayer meta-matching modestly 
outperformed meta-matching with dataset stacking

Multi-layer meta-matching was numerically better than 
meta-matching with dataset stacking for almost all values 

Fig. 4.  Prediction performance (Pearson’s correlation) in the HCP-YA and HCP-Aging datasets. (A) Phenotypic prediction 
performance in terms of Pearson’s correlation (averaged across 35 meta-test phenotypes) in the HCP-YA dataset. 
Horizontal axis is the number of participants in the HCP-YA dataset used to adapt the models trained from the meta-
training source datasets. Boxplots represent variability across 100 repetitions of sampling K participants. The bottom 
and top edges of the box indicate the 25th and 75th percentiles, respectively. Whiskers correspond to 1.5 times the 
interquartile range. “*” indicates statistical significance between multilayer meta-matching and other approaches (after 
correction for multiple comparisons with FDR q < 0.05). Dash line without “*” indicates a lack of significance. (B) Same 
plot as panel A except that the analyses were performed in the HCP-Aging dataset. The full set of p values are reported in 
Tables S9 and S10.
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of K. This improvement was significant for larger values 
of K. In the case of the HCP-YA dataset and K  >  20 
(Table  S9), multi-layer meta-matching was statistically 
better than meta-matching with dataset stacking with the 
largest p < 0.01 for both evaluation metrics (correlation 
and COD). For HCP-Aging, multilayer meta-matching 
was statistically better than meta-matching with dataset 
stacking for K = 200 for both evaluation metrics (p < 0.03; 
Table  S10). Overall, the results suggest that multilayer 
meta-matching was modestly more effective than meta-
matching with dataset stacking.

In the introduction, we suggested that since meta-
matching with stacking (He et al., 2022) improved predic-
tion significantly in small datasets, by applying the original 
meta-matching with stacking to the smaller datasets, the 
resulting features might be more helpful for the final 
stacking procedure, compared with just training KRR 
models in the smaller datasets directly. To test this 
hypothesis, we performed 5-fold cross-validation on 
three medium datasets (i.e., GSP, HBN, and eNKI-RS), to 
predict phenotypes using classical KRR. We note that the 
KRR models are used by the meta-matching with dataset 

Fig. 5.  Prediction performance (COD) in the HCP-YA and HCP-Aging datasets. (A) Phenotypic prediction performance 
in terms of COD (averaged across 35 meta-test phenotypes) in the HCP-YA meta-test set. Horizontal axis is the number 
of participants in the HCP-YA dataset used to adapt the models trained from the meta-training source datasets. Boxplots 
represent variability across 100 repetitions of sampling K participants. The bottom and top edges of the box indicate the 
25th and 75th percentiles, respectively. Whiskers correspond to 1.5 times the interquartile range. “*” indicates statistical 
significance between multilayer meta-matching and other approaches (after correction for multiple comparisons with FDR 
q < 0.05). Dash line without “*” indicates a lack of significance. (B) Same plot as panel A, except that the analyses were 
performed in the HCP-Aging dataset. The full set of p values are reported in Tables S9 and S10.
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stacking approach in the meta-test set. We also per-
formed 5-fold cross-validation on the medium datasets 
using meta-matching with stacking based on the DNN 
and LRR models from the UK Biobank and the LRR mod-
els from ABCD. We find that meta-matching with stack-
ing yielded better prediction performance than the KRR 
models in two of the three datasets (Table 2), thus provid-
ing some support for our hypothesis.

In the same analysis, we found that phenotypic pre-
dictions from classical KRR and meta-matching with 
stacking are not strongly correlated (r  =  0.4 to 0.6; 
Table  2). We remind the reader that the predictions of 
these models are used as features for stacking in the 
meta-test set. Since ensembles of diverse machine-
learning models lead to better prediction performance 
(Kuncheva & Whitaker, 2003), we speculate that the more 
diverse predictions utilized by multilayer meta-matching 
might lead to better prediction performance than meta-
matching with dataset stacking.

3.4.  Different improvements on different 
phenotypes by multilayer meta-matching

Figure 6 shows the numerical improvement in prediction 
performance (Pearson’s correlation) of multilayer meta-
matching over the other approaches across different phe-
notypes. The corresponding plot for COD is shown in 
Figure S3. Table 3 shows the percentage of phenotypes  
in which multilayer meta-matching exhibits numerical 
improvement in prediction performance (Pearson’s cor-
relation) over other approaches. COD results are shown in 
Table S11. Compared with classical KRR, transfer learn-
ing, and meta-matching with stacking, we found that mul-
tilayer meta-matching exhibited numerical improvement 
for a vast majority of the phenotypes (Table 3; Table S11).

Figure  7 illustrates the 100-shot prediction perfor-
mance (Pearson’s correlation coefficient) of three example 
meta-test phenotypes across all approaches in the 
HCP-YA (Fig. 7A) and HCP-Aging (Fig. 7B) datasets. For 
three illustrated HCP-YA phenotypes (“Delay Discount-
ing,” “Manual Dexterity,” “Arithmetic”), multilayer meta-
matching exhibited numerically the best results. On the 
other hand, among the three illustrated HCP-Aging phe-
notypes, multilayer meta-matching was numerically worse 

than meta-matching with stacking and meta-matching 
with dataset stacking in the case of “Walking Endurance,” 
but was numerically the best for “MOCA score” and “Per-
ceived Hostility.”

Tables S12 to S15 report the numerical improvement 
of multilayer meta-matching over other baselines for all 
HCP-YA and HCP-Aging phenotypes (in the 100-shot 
scenario). In the HCP-YA dataset, multilayer meta-
matching was numerically better than classical KRR for 
many cognitive measures, but also some non-cognitive 
measures, such as strength and endurance (Tables S12 
and S13). This was also the case for the HCP-Aging data-
set, and interestingly the phenotype enjoying the greatest 
improvement was strength (Tables S14 and S15).

3.5.  Feature importance using the Haufe transform

As shown in Figure  8, across both HCP-YA and HCP-
Aging datasets, feature importance values of multilayer 
meta-matching and classical KRR were equally similar to 
the pseudo ground truth feature importance values. On 
the other hand, feature importance values from transfer 
learning were the most different from the pseudo ground 
truth. If we only focused on the transfer learning and 
meta-matching models, we observed a trend in increas-
ing agreement with pseudo ground truth, which parallels 
the prediction accuracy increase from transfer learning to 
meta-matching with stacking to meta-matching with 
dataset stacking and then to multilayer meta-matching.

4.  DISCUSSION

In this study, we proposed two meta-matching algo-
rithms to translate phenotypic prediction models from 
source datasets with disparate sizes to predict new phe-
notypes in small datasets. Both approaches outper-
formed meta-matching using a single source dataset (UK 
Biobank). Both approaches also outperformed classical 
KRR and classical transfer learning by a big margin. Fur-
thermore, multilayer meta-matching compared favorably 
with meta-matching with dataset stacking across both 
HCP-YA and HCP-Aging datasets. In terms of feature 
importance based on the Haufe transform, we found that 
feature importance values of multilayer meta-matching 

Table 2.  Prediction using classical KRR versus meta-matching with stacking on medium source datasets.

Datasets

Prediction performance 
(Pearson’s correlation) 
of classical KRR

Prediction performance of (Pearson’s 
correlation) of meta-matching w/ 
stacking (from UKBB + ABCD)

Correlation between 
phenotypic prediction 
by above two methods

GSP 0.0953 0.106 0.400
HBN 0.167 0.144 0.433
eNKI-RS 0.154 0.196 0.600
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and classical KRR seemed to be equally similar to the 
pseudo ground truth, while feature importance values of 
transfer learning were the furthest away from the pseudo 
ground truth. Therefore, there was no trade-off between 
prediction accuracy and feature importance accuracy 
(with respect to the pseudo ground truth), which is con-
sistent with our previous study (Chen et al., 2023).

The relatively poor performance of classical transfer 
learning was somewhat surprising but probably indicated 
the difficulty of finetuning so many parameters in the very 
small sample regime. We note that the transfer learning 
baseline is similar to a meta-matching variant “meta-
matching finetune” from our previous study (He et  al., 
2022), except for one key difference. Both meta-matching 

Fig. 6.  Numerical improvement in prediction performance (Pearson’s correlation) across different phenotypes in the HCP-YA 
and HCP-Aging datasets. (A) Phenotypic prediction performance (averaged across 100 repetitions of sampling K participants) 
in the HCP-YA dataset. Horizontal axis is the number of participants in the HCP-YA dataset used to adapt the models trained 
from the meta-training datasets. Boxplots represent variability across the 35 HCP-YA phenotypes. The bottom and top edges 
of the box indicate the 25th and 75th percentiles, respectively. Whiskers correspond to 1.5 times the interquartile range. (B) 
Same plot as panel A except that the analyses were performed in the HCP-Aging dataset with 45 phenotypes.
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Table 3.  Percentages of phenotypes with numerical improvement in prediction performance (Pearson’s correlation).

Datasets K
Multilayer MM 

vs. classical KRR
Multilayer MM vs. 
transfer learning

Multilayer MM vs. 
MM w/ stacking

Multilayer MM vs. 
MM w/ dataset 

stacking

HCP-YA 10 85.7% 94.3% 80.0% 74.3%
20 85.7% 100% 77.1% 74.3%
50 88.6% 100% 85.7% 80.0%

100 91.4% 100% 85.7% 77.1%
200 97.1% 100% 85.7% 74.3%

HCP-Aging 10 86.7% 95.6% 75.6% 44.4%
20 86.7% 95.6% 77.8% 42.2%
50 88.9% 93.3% 82.2% 57.7%

100 88.9% 95.6% 77.8% 57.7%
200 88.9% 95.6% 82.2% 64.4%

Fig. 7.  Examples of phenotypic prediction performance in the (A) HCP-YA and (B) HCP-Aging datasets in the case of 
100-shot learning (K = 100). Here, prediction performance was measured using Pearson’s correlation. For each box plot, 
the horizontal line indicates the median. The bottom and top edges of the box indicate the 25th and 75th percentiles, 
respectively. Whiskers correspond to 1.5 times the interquartile range.
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Fig. 8.  Agreement (correlation) of feature importance values with pseudo ground truth in the (A) HCP-YA and (B) HCP-
Aging datasets. For each approach, the Haufe transform was used to estimate feature importance in the 100-shot 
scenario (K = 100), which was then compared with the pseudo ground truth. Pseudo ground truth feature importance was 
generated by applying the Haufe transform to a KRR model trained from the full target dataset. For each box plot, the 
horizontal line indicates the median, and the triangle indicates the mean. The bottom and top edges of the box indicate 
the 25th and 75th percentiles, respectively. Whiskers correspond to 1.5 times the interquartile range.

finetune and classical transfer learning finetuned the last 
two layers of the DNN. However, transfer learning initial-
ized the last layer of the DNN from scratch (Section 2.3.2), 
and then finetuned the last two layers. On the other hand, 
meta-matching finetune first selected the output node 
that predicted the K meta-test participants the best (for a 
particular meta-test phenotype), and retained the weights 
leading to the output node. The last two layers of the 
DNN were then finetuned, given that meta-matching fine-
tune was much better than classical KRR (He et al., 2022), 

but classical transfer learning was worse than KRR in the 
current study. This further supported the importance of 
the meta-matching idea.

4.1.  Meta-learning, transfer learning,  
and related problems

We mentioned in the introduction that the name  
“meta-matching” was motivated by the “matching” of 
meta-training and meta-test phenotypes. The name 
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“meta-matching” was also motivated by its close links 
with meta-learning (Andrychowicz et  al., 2016; Fei-Fei 
et  al., 2006; Finn et al., 2017; Ravi & Larochelle, 2016; 
Vanschoren, 2019). Meta-learning is often referred to as 
“learning to learn” and is closely related to “transfer 
learning” (Hospedales et  al., 2021). Both meta-learning 
and transfer learning seek to improve prediction in a new 
domain with limited training data using knowledge gained 
from previous domains (Pan & Yang, 2009). The goal of 
learning from limited training data (e.g., K training exam-
ples) is often referred to as few-shot (or K-shot) learning 
(Hospedales et al., 2021).

Meta-learning typically involves two learning levels 
(Huisman et al., 2021). At one level, the algorithm seeks to 
rapidly learn a new task with limited quantity of data. This 
rapid learning of a new task is made possible by knowl-
edge learned from earlier tasks at another level. There-
fore, meta-matching is similar in spirit to meta-learning. 
At one level, meta-matching involves training models to 
predict meta-training phenotypes. These trained models 
are then rapidly adapted to predict a new meta-test set at 
another level. However, our meta-matching approach dif-
fers from modern meta-learning algorithms that typically 
involve a meta-objective that is used to optimize an inner-
loop learner (Hospedales et al., 2021).

Transfer learning can be broadly defined as using past 
experience from one or more source tasks to improve 
learning on a target task (Hospedales et al., 2021). There-
fore, meta-learning is one approach that can be used to 
improve transfer learning (Hospedales et al., 2021). Con-
sequently, we can also consider meta-matching as a type 
of transfer learning algorithm. One distinction between 
meta-learning and transfer learning is that meta-learning 
always involves training a machine-learning model from a 
wide range of meta-training tasks and then adapting to 
perform a new prediction problem in the target dataset. 
On the other hand, in transfer learning, the prediction 
problem in the target dataset can be the same (Chen 
et al., 2020; Vakli et al., 2018; Zhang & Bellec, 2020) or 
different (Hon & Khan, 2017; Lu et  al., 2021; Schirmer 
et al., 2021) in the source dataset. While the prediction 
problem is the same in the target and source domains, 
the input feature distribution might be different between 
the two domains, which is a problem known as domain 
shift (Hospedales et  al., 2021). Domain adaptation is, 
therefore, a type of transfer learning which seeks to 
address the problem of domain shift.

Finally, we note that the stacking procedure employed 
by multilayer meta-matching (and other meta-matching 
variants) utilized the predictions of meta-training pheno-
types as input features to predict new meta-test pheno-
types. This contrasts with many RSFC-based prediction 
approaches that utilized the RSFC data directly (Finn 

et al., 2015; He et al., 2020), and is reminiscent of studies 
predicting a phenotype from previously predicted mea-
sures (Gal, Tik, et al., 2022; Yoo et al., 2022).

4.2.  Limitations and future work

One important limitation of meta-matching is that the 
magnitude of prediction improvement heavily depends 
on the correlations between meta-training and meta-test 
phenotypes (He et  al., 2022). Consequently, we do not 
expect all meta-test phenotypes to benefit from meta-
matching (Fig.  6). However, it is important to note that 
this limitation exists for all meta-learning and transfer 
learning algorithms (Jose & Simeone, 2021; Zhang et al., 
2017). Model transfer is easier if the source and target 
domains are more similar. Performance will degrade if the 
source and target domains are very different. This obser-
vation motivates the addition of more source datasets.

Based on the current trends (Figs. 4 and 5), we might 
expect multilayer meta-matching to remain better than 
classical KRR beyond 200 participants. However, we 
would expect classical KRR to catch up for larger K, and 
might ultimately be better than multilayer meta-matching 
for relatively large K. A hint of this crossover can be found 
in Table 2, where KRR was numerically better than meta-
matching with stacking for 5-fold cross-validation of HBN 
(N  =  930), but numerically worse than meta-matching 
with stacking for 5-fold cross-validation of GSP (N = 862) 
and eNKI-RS (N = 896).

Finally, we note that there are multiple possible exten-
sions to the current work. Within the context of resting-
state functional connectivity, we could explore the use of 
individual-specific parcellations, which have been shown 
to improve phenotypic prediction performance compared 
with group-level parcellations (Kong et al., 2021; M. Li et al., 
2019). Furthermore, previous studies have suggested 
that other FC measures (e.g., partial correlations) can 
lead to better prediction performance than Pearson’s 
correlation (Dadi et al., 2019; Farahibozorg et al., 2021; 
Pervaiz et al., 2020). Some studies have suggested that 
fine-grained FC might capture additional behavioral infor-
mation (Feilong et  al., 2021). Therefore, meta-matching 
models based on other FC measures (e.g., fine-grained 
FC and partial correlations) might also be explored.

Beyond resting-state functional connectivity, meta-
matching can be applied to other imaging modalities, 
such as task-FC (Chen et al., 2022; Greene et al., 2018) 
and fMRI during naturalistic stimulus (Finn, 2021; Finn & 
Bandettini, 2021; Gal, Coldham, et al., 2022), which have 
shown improvements over RSFC for phenotypic predic-
tion. However, developing meta-matching models for 
task-fMRI and naturalistic-FC is more challenging 
because large datasets with consistent task or movie 
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paradigm are not common. Other alternative modalities 
include anatomical T1 images and diffusion MRI. In the 
case of anatomical T1 images, we could simply replace 
the fully connected feedforward DNN used in the current 
study with 3D convolutional neural networks (Wulan 
et  al., 2024). Finally, the datasets in the current study 
comprised relatively healthy participants. Meta-matching 
might be potentially useful for psychiatric populations 
(Chopra et  al., 2022). Including psychiatric datasets to 
the base model training might further improve generaliza-
tion to new datasets by increasing the diversity of the 
source datasets.
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