001030932 001__ 1030932
001030932 005__ 20250912110145.0
001030932 0247_ $$2doi$$a10.1162/imag_a_00101
001030932 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-05524
001030932 0247_ $$2pmid$$a40800417
001030932 0247_ $$2WOS$$aWOS:001531547100003
001030932 037__ $$aFZJ-2024-05524
001030932 082__ $$a050
001030932 1001_ $$0P:(DE-HGF)0$$aNomi, Jason S.$$b0$$eCorresponding author
001030932 245__ $$aSystematic cross-sectional age-associations in global fMRI signal topography
001030932 260__ $$aCambridge, MA$$bMIT Press$$c2024
001030932 3367_ $$2DRIVER$$aarticle
001030932 3367_ $$2DataCite$$aOutput Types/Journal article
001030932 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737100648_6866
001030932 3367_ $$2BibTeX$$aARTICLE
001030932 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001030932 3367_ $$00$$2EndNote$$aJournal Article
001030932 520__ $$aThe global signal (GS) in resting-state functional MRI (fMRI), known to contain artifacts and non-neuronal physiological signals, also contains important neural information related to individual state and trait characteristics. Here, we show distinct linear and curvilinear relationships between GS topography and age in a cross-sectional sample of individuals (6-85 years old) representing a significant portion of the lifespan. Subcortical brain regions such as the thalamus and putamen show linear associations with the GS across age. The thalamus has stronger contributions to the GS in older-age individuals compared with younger-aged individuals, while the putamen has stronger contributions in younger individuals compared with older individuals. The subcortical nucleus basalis of Meynert shows a u-shaped pattern similar to cortical regions within the lateral frontoparietal network and dorsal attention network, where contributions of the GS are stronger at early and old age, and weaker in middle age. This differentiation between subcortical and cortical brain activity across age supports a dual-layer model of GS composition, where subcortical aspects of the GS are differentiated from cortical aspects of the GS. We find that these subcortical-cortical contributions to the GS depend strongly on age across the lifespan of human development. Our findings demonstrate how neurobiological information within the GS differs across development and highlight the need to carefully consider whether or not to remove this signal when investigating age-related functional differences in the brain.
001030932 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001030932 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001030932 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001030932 7001_ $$0P:(DE-HGF)0$$aBzdok, Danilo$$b1
001030932 7001_ $$0P:(DE-Juel1)164828$$aLi, Jingwei$$b2$$ufzj
001030932 7001_ $$0P:(DE-HGF)0$$aBolt, Taylor$$b3
001030932 7001_ $$0P:(DE-HGF)0$$aChang, Catie$$b4
001030932 7001_ $$0P:(DE-HGF)0$$aKornfeld, Salome$$b5
001030932 7001_ $$0P:(DE-HGF)0$$aGoodman, Zachary T.$$b6
001030932 7001_ $$0P:(DE-HGF)0$$aYeo, B. T. Thomas$$b7
001030932 7001_ $$0P:(DE-HGF)0$$aSpreng, R. Nathan$$b8
001030932 7001_ $$0P:(DE-HGF)0$$aUddin, Lucina Q.$$b9
001030932 773__ $$0PERI:(DE-600)3167925-0$$a10.1162/imag_a_00101$$gVol. 2, p. 1 - 13$$p1 - 13$$tImaging neuroscience$$v2$$x2837-6056$$y2024
001030932 8564_ $$uhttps://juser.fz-juelich.de/record/1030932/files/imag_a_00101.pdf$$yOpenAccess
001030932 909CO $$ooai:juser.fz-juelich.de:1030932$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001030932 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a  Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States †Corresponding Author: Jason S. Nomi (jnomi@mednet.ucla.edu)$$b0
001030932 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164828$$aForschungszentrum Jülich$$b2$$kFZJ
001030932 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)164828$$a HHU Düsseldorf$$b2
001030932 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001030932 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001030932 9141_ $$y2024
001030932 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001030932 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001030932 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001030932 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-09-26T09:40:26Z
001030932 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-09-26T09:40:26Z
001030932 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-09-26T09:40:26Z
001030932 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001030932 9801_ $$aFullTexts
001030932 980__ $$ajournal
001030932 980__ $$aVDB
001030932 980__ $$aUNRESTRICTED
001030932 980__ $$aI:(DE-Juel1)INM-7-20090406